INSTRUCTIONS for

C-67-1400 MACHINE CUTTING TORCHES
P/N 644644 (20 in long)
P/N 2217997 (12 in long)

These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for oxy-fuel gas equipment, we urge you to read our booklet "Precautions and Safe Practices for Gas Welding, Cutting and Heating" Form 2035. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these Instructions. If you do not fully understand these Instructions, contact your supplier for further information.

The cutting torches covered by these Instructions are listed by Third Party Listed only when using cutting nozzles and parts manufactured by The Esab Group, Inc. to the specifications on file with Third Party Listed, and when they are used in the gas service for which they are designed and listed. The use of other parts voids the manufacturer's warranty.

The C-67-1400 machine cutting torches are designed for use with any fuel gas such as FG-2, natural gas, propane, MAPP, etc. but NOT for acetylene. DO NOT USE C-67-1400 TORCH WITH ACETYLENE.

The C-67-1400 torches have three-hose connections for independent supply of cutting oxygen, preheat oxygen, and fuel gas. A two hose C-67-1400 is also available where the cutting oxygen and preheat oxygen have been combined. They are equipped with valves. All have 1-3/8-in. diameter casing and are equipped with 32-pitch rack for use with any ESAB cutting machine. The torches are capable of cutting steel up to 28-in. thick using 1427 and 1431 series nozzles (see Table 1).

OPERATING INSTRUCTIONS

CONNECTING
1. Follow all instructions supplied with the regulators. Attach one regulator for cutting oxygen supply, one for preheat oxygen, and one for fuel gas.

NOTE: If gas is being supplied from a pipeline, a back-pressure check valve or a hydraulic must be installed between pipeline shut-off valve and torch (Ref: National Fire Protection Association Standard No. 51.)

2. Attach hoses from each regulator to the proper connections on the torch (the green oxygen hoses have right-hand threaded nuts and the red fuel gas connection nuts are left-handed). Tighten all connection nuts with a wrench.
3. Attach nozzle to torch head, and tighten nozzle nut with a wrench.
4. Check valve stem packing nuts for tightness.

ADJUSTING GAS PRESSURES
Fuel Gas: If fuel gas is supplied from a station outlet through a check valve or hydraulic, merely open the station valve. If fuel gas is being supplied through a station or cylinder regulator, open the fuel gas valve on the torch, turn in the pressure-adjusting screw on the regulator until the regulator delivery-pressure gauge indicates the desired pressure. (See operating data on page 3.) Then close the cutting oxygen valve.

Repeat procedure with the preheat oxygen.

NOTE: When gaugeless regulators are used, do not open torch valves. Merely turn in the pressure-adjusting screws to desired pressures as indicated on the scales of regulator caps.

TESTING FOR LEAKS
Every welding and cutting outfit should be thoroughly tested for leaks after it is first hooked up, and at regular intervals thereafter. After all connections have been made, make sure all valves on the torch handle are closed. Then turn in the pressure-adjusting screw on each regulator until its delivery-pressure gauge registers a reading greater than the normal operating pressure. Using Leak Test Solution suitable for oxygen service, such as P/N 998771 (8 oz. container), check for leaks at the cylinder valves, the cylinder-to-regulator connections, the regulator-to-hose connections, and the hose-to-torch connections. If bubbling at any point indicates leakage, tighten the connection. If this does not stop the leakage, close the appropriate cylinder valve, open the torch valve to remove all pressure from the line, and finally release the regulator pressure-adjusting screw by turning it counterclockwise. Then break the leaky connection, wipe metal seating surfaces with clean, dry cloth, and examine them for nicks and scratches.

Remake the connection(s) and retest. Do not try to light the torch until you are satisfied that all connections are gastight.

After lighting the torch, and adjusting the flames, use leak test solution to check for leakage at all torch valves.

Be sure this information reaches the operator. You can get extra copies through your supplier.
When using Oxy-Fuel Gas Torches, basic safety precautions should always be followed:

a. Never use Acetylene gas at a pressure over 15 psig.
b. Never use damaged equipment.
c. Never use oil or grease on or around Oxygen equipment.
d. Never use Oxygen or fuel gas to blow dirt or dust off clothing or equipment.
e. Never light a torch with matches or a lighter. Always use a striker.
f. Always wear the proper welding goggles, gloves and clothing when operating Oxy-Acetylene equipment. Pants should not have cuffs.
g. Do not carry lighters, matches or other flammable objects in pockets when welding or cutting.
h. Always be aware of others around you when using a torch.
i. Be careful not to let welding hoses come into contact with torch flame or sparks from cutting.
j. SAVE THESE INSTRUCTIONS.
SAFETY PRECAUTIONS

WARNING
These Safety Precautions are for your protection. They summarize precautionary information from the references listed in the Additional Safety Information section. Before performing any installation or operating procedures, be sure to read and follow the safety precautions listed below as well as all other manuals, material safety data sheets, labels, etc. Failure to observe Safety Precautions can result in injury or death.

PROTECT YOURSELF AND OTHERS - Some welding, cutting and gouging processes are noisy and require ear protection. Hot metal can cause skin burns and heat rays may injure eyes. Training in the proper use of the processes and equipment is essential to prevent accidents. Also:

1. Always wear safety glasses with side shields in any work area, even if welding helmets, face shields, or goggles are also required.
2. Wear flameproof gauntlet type gloves, heavy long-sleeve shirt, cuffed trousers, high-topped shoes, and a welding helmet or cap for hair protection, to protect against hot sparks and hot metal. A flameproof apron may also be desirable as protection against radiated heat and sparks.
3. Hot sparks or metal can lodge in rolled up sleeves, trousers cuffs, or pockets. Sleeves and collars should be kept buttoned, and open pockets eliminated from the front of clothing.
4. Protect other personnel from hot sparks with a suitable non-flammable partition or curtains.
5. Use goggles over safety glasses when chipping slag or grinding. Chipped slag may be hot and can travel considerable distances. Bystanders should also wear goggles over safety glasses.

FIRES AND EXPLOSIONS - Heat from a flame can act as an ignition source. Hot slag or sparks can also cause fires or explosions. Therefore:

1. Remove all combustible materials well away from the work area or completely cover the materials with a protective non-flammable covering. Combustible materials include wood, cloth, sawdust, liquid and gas fuels, solvents, paints and coatings, paper, etc.
2. Hot sparks or hot metal can fall through cracks or crevices in floors or wall openings and cause a hidden smoldering fire on the floor below. Make certain that such openings are protected from hot sparks and metal.
3. Do not weld, cut, or perform any other hot work on materials, containers, or piping until it has been completely cleaned so that no substances on the material can produce flammable or toxic vapors. Do not do hot work on closed containers. They may explode.
4. Have fire extinguishing equipment handy for instant use, such as a garden hose, a pail of water or sand, or portable fire extinguisher. Be sure you are trained in its use.
5. After completing operations, inspect the work area to be sure that there are no hot sparks or hot metal which could cause a later fire. Use fire watchers when necessary.
6. For additional information, refer to NFPA Standard 51B, “Fire Prevention in Use of Cutting and Welding Processes”, which is available from the National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

FUMES AND GASES - Fumes and gases, particularly in confined spaces, can cause discomfort or injury. Do not breathe fumes or gases from welding or cutting. Therefore:

1. Always provide adequate ventilation in the work area by natural or mechanical ventilation means. Do not weld, cut, or gouge on materials such as galvanized steel, stainless steel, copper, zinc, lead, beryllium, or cadmium unless positive mechanical ventilation is provided. Do not breathe fumes and gases from these materials.
2. If you develop momentary eye, nose, or throat irritation while operating, this is an indication that ventilation is not adequate. Stop work at once and take necessary steps to improve ventilation in the work area. Do not continue to operate if physical discomfort persists.
3. Refer to ANSI/ASC Standard Z49.1 listed below for specific ventilation recommendations.
4. **WARNING**: This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code §25249.5 et seq.)

EQUIPMENT MAINTENANCE - Faulty or improperly maintained equipment, such as torches, hoses and regulators, can result in poor work, but even more important, it can cause injury or death through fires. Therefore:

1. Always have qualified personnel perform the installation, troubleshooting, and maintenance work. Do not operate or repair any equipment unless you are qualified to do so.
2. Keep all oxy-fuel torches, gas or oil. Grease, oil, and other similar combustible materials, when ignited, can burn violently in the presence of oxygen.
3. Do not abuse any equipment or accessories. Keep equipment away from heat and wet conditions, oil or grease, corrosive atmospheres and inclement weather.
4. Keep all safety devices in position and in good repair.
5. Use equipment for its intended purpose. Do not modify it in any manner.

GAS CYLINDER HANDLING - Gas cylinders, if mishandled, can rupture or explode violently. Sudden rupture of a cylinder, valve or relief device can injure or kill you. Therefore:

1. Use the proper gas for the process and use the proper pressure reducing regulator designed to operate from the compressed gas cylinder. Do not use adaptors to mount the regulator on the cylinder. Maintain hoses and fittings in good condition. Follow manufacturer’s operating instructions for mounting the regulator to the gas cylinder.
2. Always secure cylinders in an upright position by chain or strap to suitable hand trucks, benches, walls, post, or racks. Never secure cylinders to work tables or fixtures where they may become part of an electrical circuit.
3. When not in use, keep cylinder valves closed. Have the valve protection cap in place on top of the cylinder if no regulators is installed. Secure and move cylinders by using suitable hand trucks. Avoid rough handling of cylinders.
4. Locate cylinders away from heat, sparks, or flame of a welding, cutting, or gouging operation. Never strike an arc on a cylinder.
5. For additional information, refer to CGA Standard P-1, “Precautions for Safe Handling of Compressed Gases in Cylinders”, which is available from the Compressed Gas Association, 1235 Jefferson Davis Highway, Arlington, VA 22202.

ADDITIONAL SAFETY INFORMATION - For more information on safe practices for oxy-fuel welding and cutting equipment, ask your distributor for a copy of “Precautions and Safe Practices for Gas Welding, Cutting, and Heating”, Form 2035. Gas apparatus safety guidelines are also available on video cassettes from your distributor.

The following publications, which are available from the American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126, are recommended to you:

1. ANSI/AWS Z49.1 - “Safety in Welding and Cutting”.
2. AWS F4.1 - “Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances’”

MEANING OF SYMBOLS - As used throughout this manual:

- **DANGER**
 - Means immediate hazards which, if not avoided, will result in immediate, serious personal injury or loss of life.
- **WARNING**
 - Means potential hazards which could result in personal injury or loss of life.
- **CAUTION**
 - Means hazards which could result in minor personal injury.
LIGHTING AND FLAME ADJUSTMENT

Open the preheat valve wide (two turns). Open the fuel gas valve about one turn. Light the gas at the nozzle with a friction lighter. Then open the cutting oxygen valve and adjust flames with the fuel gas valve. The hottest flames are obtained when the inner cones are as short as possible. Do not throttle the preheat oxygen valve unless flames blow off, or burn away from the nozzle.

NOTE: Because of the several factors involved (injector nozzle size, gas pressures) the adjustment procedures given above do not apply in all situations. However, this is a good rule-of-thumb if you want preheat flames of maximum effectiveness: you should usually be able to keep one preheat valve wide open if regulator oxygen pressure has been set correctly for the nozzle in use.

SHUTTING OFF

Close the cutting oxygen valve. Then close the fuel gas valve, and finally the preheat oxygen valve.

If operations are to be stopped for a half-hour or more, all pressure should be released from the torch, hoses, and regulators by doing the following:

1. Close each cylinder or station valve.
2. Open torch valves.
3. After relieving the gases, back out the pressure-adjusting screw of each regulator and close the torch valves.

OPERATING PRECAUTIONS

Backfire: Improper operation of the torch may cause the flames to go out with a loud 'pop'. Such a backfire may be caused by contact of nozzle with the work, by spatter from the work, by the use of incorrect gas pressure, or by leakage at the cutting nozzle seats due to dirt or nicks on seats or to a loose nozzle nut.

Flashback: Under certain exceptional circumstances, the flame may not 'pop' out (backfire) but instead burn back inside the torch with a shrill hissing or squeal. This is called a 'flashback'. A flashback should never occur if (1) the equipment is in good condition; (2) preheat ports on cutting nozzles or welding tips are cleaned frequently; and (3) operating pressures are correct. Should a flashback occur, IMMEDIATELY shut off the torch. Allow it to cool off for at least a minute. Then check your nozzle or tip, gas pressures, readjust regulator if necessary, and relight the torch. If flashback recurs, send the torch to your distributor for repair.
OXWELD - 1400 Series Gas Cutting Nozzles

1427 Series Natural Gas Nozzles - U.S. Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Steel Thickness, in.</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed, in/min.</th>
<th>Natural Gas</th>
<th>Cleaning Drill Size</th>
<th>Gas Consumption, cfm</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>75-85</td>
<td>8-10</td>
<td>16-19</td>
<td>4-5</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>60-70</td>
<td>7-9</td>
<td>8-11</td>
<td>3-4</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>55-65</td>
<td>9-12</td>
<td>11-15</td>
<td>3-4</td>
<td>53</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>45-55</td>
<td>13-18</td>
<td>17-23</td>
<td>2-3</td>
<td>52</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>40-50</td>
<td>21-25</td>
<td>23-33</td>
<td>2-3</td>
<td>51</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>30-40</td>
<td>29-33</td>
<td>24-45</td>
<td>2-3</td>
<td>50</td>
</tr>
</tbody>
</table>

1427 Series Natural Gas Nozzles - Metric Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Steel Thickness, mm</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed, m/min.</th>
<th>Natural Gas</th>
<th>Cleaning Drill Size</th>
<th>Gas Consumption, M/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>300</td>
<td>5-6-0</td>
<td>0.6-0.7</td>
<td>1.1-1.3</td>
<td>55</td>
<td>22.7</td>
</tr>
<tr>
<td>14</td>
<td>350</td>
<td>4-2-4</td>
<td>0.5-0.6</td>
<td>0.6-0.8</td>
<td>22</td>
<td>25-25</td>
</tr>
<tr>
<td>16</td>
<td>400</td>
<td>3-4-3</td>
<td>0.5-0.6</td>
<td>0.6-0.8</td>
<td>34</td>
<td>32.6</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>2-3-3</td>
<td>0.9-1.3</td>
<td>1.2-1.5</td>
<td>41</td>
<td>41.7</td>
</tr>
<tr>
<td>24</td>
<td>600</td>
<td>2-3-3</td>
<td>1.5-1.8</td>
<td>2.0-2.3</td>
<td>52</td>
<td>52.7</td>
</tr>
<tr>
<td>28</td>
<td>700</td>
<td>2-1-3</td>
<td>2.0-3</td>
<td>2.7-3.2</td>
<td>58</td>
<td>58.7</td>
</tr>
</tbody>
</table>

1431 Series Fuel Gas Nozzles - U.S. Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Steel Thickness, in.</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed, in/min.</th>
<th>Natural Gas</th>
<th>Cleaning Drill Size</th>
<th>Gas Consumption, cfm</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3-6</td>
<td>80-115</td>
<td>17</td>
<td>18-30</td>
<td>55</td>
<td>1350</td>
</tr>
<tr>
<td>14</td>
<td>6-10</td>
<td>80-115</td>
<td>13</td>
<td>10-20</td>
<td>54</td>
<td>1550</td>
</tr>
<tr>
<td>16</td>
<td>10-16</td>
<td>80-115</td>
<td>14</td>
<td>10-20</td>
<td>53</td>
<td>1650</td>
</tr>
<tr>
<td>20</td>
<td>12-20</td>
<td>80-115</td>
<td>20</td>
<td>8-20</td>
<td>52</td>
<td>2100</td>
</tr>
<tr>
<td>24</td>
<td>20-24</td>
<td>80-115</td>
<td>30</td>
<td>6-17</td>
<td>51</td>
<td>4100</td>
</tr>
<tr>
<td>28</td>
<td>24-28</td>
<td>80-115</td>
<td>42</td>
<td>4-16</td>
<td>50</td>
<td>4900</td>
</tr>
</tbody>
</table>

1431 Series Fuel Gas Nozzles - Metric Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Steel Thickness, mm</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed, m/min.</th>
<th>Natural Gas</th>
<th>Cleaning Drill Size</th>
<th>Gas Consumption, M/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>75-150</td>
<td>5-6-1</td>
<td>0.6</td>
<td>1.2</td>
<td>55</td>
<td>38.2</td>
</tr>
<tr>
<td>14</td>
<td>150-250</td>
<td>5-6-1</td>
<td>0.7</td>
<td>0.9</td>
<td>25-500</td>
<td>52.4</td>
</tr>
<tr>
<td>16</td>
<td>250-400</td>
<td>5-6-1</td>
<td>0.8</td>
<td>1.0</td>
<td>25-500</td>
<td>59.5</td>
</tr>
<tr>
<td>20</td>
<td>400-500</td>
<td>5-6-1</td>
<td>1.1</td>
<td>1.4</td>
<td>200-500</td>
<td>67.8</td>
</tr>
<tr>
<td>24</td>
<td>500-600</td>
<td>5-6-1</td>
<td>1.5</td>
<td>2.1</td>
<td>50-600</td>
<td>133.1</td>
</tr>
<tr>
<td>28</td>
<td>600-700</td>
<td>4-2-6</td>
<td>2.1</td>
<td>3.0</td>
<td>100-500</td>
<td>136.8</td>
</tr>
</tbody>
</table>

Ring Flame Fuel Gas Nozzles (2-Piece) - U.S. Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Nozzle Core Size</th>
<th>Nozzle + Outer Sleeve Part No.</th>
<th>Nozzle Outer Sleeve Part No.</th>
<th>Steel Thickness in.</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2121848*</td>
<td>2191485*</td>
<td>1981848*</td>
<td>Up to 6</td>
<td>90-115</td>
<td>18-30</td>
<td>1350</td>
</tr>
<tr>
<td>14</td>
<td>2121945*</td>
<td>2191485*</td>
<td>1981945*</td>
<td>6-10</td>
<td>10-20</td>
<td>1500</td>
<td>1850</td>
</tr>
<tr>
<td>16</td>
<td>2121957*</td>
<td>2191485*</td>
<td>1981957*</td>
<td>10 & Up</td>
<td>10-20</td>
<td>1850</td>
<td>2100</td>
</tr>
</tbody>
</table>

Ring Flame Fuel Gas Nozzles (2-Piece) - Metric Dimensions

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Nozzle Core Size</th>
<th>Nozzle + Outer Sleeve Part No.</th>
<th>Nozzle Outer Sleeve Part No.</th>
<th>Steel Thickness in.</th>
<th>Gas Pressure, psig</th>
<th>Cutting Speed</th>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2121848*</td>
<td>2191485*</td>
<td>1981848*</td>
<td>6-3-6</td>
<td>6-3-6</td>
<td>2.3</td>
<td>30,2</td>
</tr>
<tr>
<td>14</td>
<td>2121945*</td>
<td>2191485*</td>
<td>1981945*</td>
<td>150-250</td>
<td>250-500</td>
<td>2.8</td>
<td>30,2</td>
</tr>
<tr>
<td>16</td>
<td>2121957*</td>
<td>2191485*</td>
<td>1981957*</td>
<td>250 & Up</td>
<td>250-500</td>
<td>2.8</td>
<td>30,2</td>
</tr>
</tbody>
</table>

1410 & 1427 Series Nozzles - Cutting speeds are based on cutting steel at room temperature and have straight cylindrical cutting bores.

1431 Series Nozzles - Cutting speeds are based on cutting steel at temperatures over 1000°F (540°C), and have tapered divergent cutting bores. These nozzles are used in continuous cutting and offer plate-tiping applications where it is necessary to "slice through" quickly.

Ring Flame Fuel Gas Nozzles (2-Piece) - U.S. Dimensions

Ring Flame Fuel Gas Nozzles (2-Piece) - Metric Dimensions

The "Ring Flame" Nozzles - Cutting speeds are based on cutting steel at temperatures over 1000°F (540°C), and have tapered divergent cutting bores. Applications are the same as 1410 through 1427 series nozzles. The ring flame design has a preheat gas slot (instead of holes) surrounding the cutting bore and is less susceptible to blowout due to slag blowback. The ring flame nozzles can operate up to 5-1/2 in. (127 mm) of the work surface and corner starting is less critical.

Special nozzle core sizes are available for high pressure, high speed applications.

Available off the shelf.
MAINTENANCE INSTRUCTIONS

For all repairs other than those covered below, send the torch to ESAB Remanufacturing Center, Florence, SC, or to your ESAB equipment distributor. Improperly repaired apparatus is hazardous.

Torch Valves: Leakage around a valve stem can usually be corrected by tightening the packing nut slightly. If this does not stop the leakage, replace the valve stem assembly.

NOTE: Split packing washer (78204) is available for replacement of the original packing washer on the cutting oxygen valve stem assembly (33Y06). The old washer has to be pried out and cut off before installing the replacement washer.

If a valve fails to shut off completely, remove the valve stem assembly from the torch. With a clean cloth, wipe the ball in the end of the stem. Then reinsert valve stem assembly and tighten it several times with maximum force. If this does not eliminate leakage, try a new valve stem assembly.

If the valve does not shut off completely, send the torch to an authorized ESAB distributor repair station for reseating of the body.

After installing a replacement packing washer, or a new valve stem assembly, close the valve so that the valve stem is in line with the seat in the body and then tighten the packing nut until the valve stem can be turned only with great difficulty. Set the unit aside for three or four hours at least, to set the packing. Then back off the packing nut until the valve stem turns readily.

Injector: To remove the injector for inspection or replacement, first unscrew the injector chamber plug and remove the injector spring. Then run a long No. 10-32 machine screw into the threads in the end of the injector and withdraw the injector by pulling on the screw.

Before reinstalling a previously-used injector, be sure that the O-rings at each end of the injector assembly are in good condition. Replace them if necessary. Also be sure the injector chamber plug is fitted with an O-ring in good condition (even in cases where the plug carried no O-ring originally).

For longer life, nozzles should be cleaned periodically in a solution of OXWELD Nozzle Cleaning Compound (P/N 761F00) made up and used as directed on the container in which it is packed.

Cleaning Cutting Nozzles: If a cutting nozzle does not produce straight, uniform flames, or if any of the nozzle orifices become clogged, the nozzle should be cleaned. Use a soft bristle brush for cleaning the preheat slots on the internal nozzles of two-piece nozzles.

Proper size twist drills or OXWELD tip cleaners can be used for cleaning orifices on the nozzles. If using twist drills, insert carefully and push it back and forth but DO NOT twist the drill.
PARTS INFORMATION

All parts which can be replaced without breaking soldered or brazed joints are illustrated and listed below. When ordering parts, please give both part number and description (including size where appropriate). Parts may be ordered from you ESAB distributor or from ESAB Welding & Cutting Products, Customer Service Department, Florence, S. C.

For pressures above 5 psi Cutting Range: 12 to 20 in.

ACCESSORY: Med. Press., Hi-Cap (LPMC) INJECTOR ASSY. - 01Y57 (C-67-20) 01Y75 (C-67-12)

C-67-1400-20 Torch Assembly, P/N 644644
C-67-1400-12 Torch Assembly, P/N 2217997
C-67-1400-20 Torch Assembly, P/N 2222843 (2 Hose)
A. CUSTOMER SERVICE QUESTIONS:
 Telephone: (800)362-7080 / Fax: (800) 634-7548 Hours: 8:00 AM to 7:00 PM EST
 Order Entry Product Availability Pricing Order Information Returns

B. ENGINEERING SERVICE:
 Telephone: (843) 664-4416 / Fax: (800) 446-5693 Hours: 7:30 AM to 5:00 PM EST
 Warranty Returns Authorized Repair Stations Welding Equipment Troubleshooting

C. TECHNICAL SERVICE:
 Telephone: (800) ESAB-123/ Fax: (843) 664-4452 Hours: 8:00 AM to 5:00 PM EST
 Part Numbers Technical Applications Specifications Equipment Recommendations

D. LITERATURE REQUESTS:
 Telephone: (843) 664-5562 / Fax: (843) 664-5548 Hours: 7:30 AM to 4:00 PM EST

E. WELDING EQUIPMENT REPAIRS:
 Telephone: (843) 664-4487 / Fax: (843) 664-5557 Hours: 7:30 AM to 3:30 PM EST
 Repair Estimates Repair Status

F. WELDING EQUIPMENT TRAINING
 Telephone: (843) 664-4428 / Fax: (843) 679-5864 Hours: 7:30 AM to 4:00 PM EST
 Training School Information and Registrations

G. WELDING PROCESS ASSISTANCE:
 Telephone: (800) ESAB-123 Hours: 7:30 AM to 4:00 PM EST

H. TECHNICAL ASST. CONSUMABLES:
 Telephone: (800) 933-7070 Hours: 7:30 AM to 5:00 PM EST

IF YOU DO NOT KNOW WHOM TO CALL
 Telephone: (800) ESAB-123
 Fax: (843) 664-4462
 Hours: 7:30 AM to 5:00 PM EST
 or
 visit us on the web at http://www.esabna.com
 The ESAB web site offers
 Comprehensive Product Information
 Material Safety Data Sheets
 Warranty Registration
 Instruction Literature Download Library
 Distributor Locator
 Global Company Information
 Press Releases
 Customer Feedback & Support