INSTRUCTIONS and PARTS LIST for

Oxweld

M-26, M-27, M-28 and M-29
SINGLE-REGULATOR MANIFOLDS
for
INERT GASES AND FUEL GASES

Listed under Re-examination Service of Underwriters' Laboratories, Inc.
M-28 and M-29 Fuel Gas Manifolds are Approved and Listed by Factory Mutual Laboratories.

CONTENTS

INTRODUCTION
I. INSTALLATION PROCEDURE
 Wall Mountings
 A. M-26, M-27; also M-28 and M-29 without Hydraulic Valve (Fig. 1)
 B. M-28 and M-29 with H-12-3M Hydraulic Back-Pressure Valve (Fig. 2)
II. OPERATING INSTRUCTIONS
 A. Initial Starting
 B. To Set the Reserve Bank in Operation
III. MAINTENANCE INSTRUCTIONS
 A. Checking the Manifold for Leaks
 B. Header Valves
 C. Removal of Regulator for Repair
 D. To Replace the Regulator After It Has Been Repaired
IV. GENERAL PRECAUTIONS
REPLACEMENT PARTS LIST

Be sure this information reaches the operator. You can get extra copies through any Linde office.
IMPORTANT

This booklet contains instructions for installing and operating the OXWELD M-26, M-27, M-28 and M-29 Manifolds. Read it and keep it for future use. If you are not familiar with the general principles of operation and safe practices, which should be understood before using this type of equipment, we recommend your reading Precautions and Safe Practices (in addition to these instructions) which you can obtain without charge from any LINDE office.

Fuel Gas Manifolds should be installed and operated in accordance with the "Standards of the National Board of Fire Underwriters for the Installation and Operation of Gas Systems for Welding and Cutting," NBFU pamphlet No. 51.

The terms "Linde," "Oxygen," and "Pyrofax" are registered trade-marks of Union Carbide and Carbon Corporation.
INTRODUCTION

Purpose

The OXWELD M-26, M-27, M-28 and M-29 Single-Regulator Manifolds are designed to furnish an almost continuous supply of LINDE industrial gases to distribution piping systems in industrial shops, welding schools and other installations whose operations will not be hindered by the slight service interruption encountered in shutting down an empty bank of cylinders and cutting in a full bank.

M-26...Water-Pumped Inert Gas (argon, nitrogen) and helium supplied in cylinders having right-hand outlet threads,

M-27...Oil-Pumped Inert Gas (nitrogen, argon, helium).

M-28...High-Pressure Fuel Gas (hydrogen, methane).

M-29...Liquefied Petroleum Gas (propane, butane, and trade-marked gases such as PYROFAX, Philgas, Hopane, etc.).

These manifolds have two separate "headers" or cylinder banks, each of which can be cut in or out of service by opening or closing its header valve. The two banks can therefore be operated alternately or simultaneously, and the manifold can continue in operation even if one bank is cut out for repairs or maintenance.

Description

A complete manifold of this group consists of:

a. A manifold control assembly, consisting of two header valves, an inlet tee assembly, through which both headers feed gas into a two-stage regulator, and then into an outlet block assembly. These components and their interconnecting piping are mounted on a back plate which has slotted holes to fit over two mounting bolts.

The regulator is not furnished with the control assembly. It must be ordered separately along with suitable connection fittings (inlet adaptor, outlet tube) to meet the delivery pressure and flow requirements for which the manifold is intended. OXWELD R-60 Series Regulators (R-65, R-65, R-65, R-75) are normally used, but the OXWELD R-32 and R-44 can also be used where greater flow capacity is required. See page 14 for the correct combinations of manifolds and regulators.

An inlet connection on each side of the control provides for the connection of one cylinder lead and also for the addition of extensions to increase the manifold's capacity as desired.

b. Two "headers," each consisting of a number of threaded extensions determined by the number of cylinders to be manifolded, and the type of layout desired. Each extension accommodates one cylinder lead; the last extension will also take another lead parallel to the mounting surface, but this requires careful rebending of the manifold-to-cylinder lead. If not used, the last connection is sealed with a plug assembly (provided).

Straight extensions are employed to build up rows of cylinders along the mounting surface; a curved extension is used to extend a header around a corner, as shown in Fig. 1. Where wall space is not available, a floor-type installation on an "A" frame can be set up, using "tee" extensions to establish a second row of cylinders parallel to the first. For further information on this type of arrangement, consult your LINDE dealer.

c. Manifold to cylinder leads (one for each cylinder). The type of lead used depends upon the kind of cylinder to be manifolded.

d. An H-12-3M Hydraulic Back-Pressure Valve must be used with the M-28 and M-29 Fuel Gas Manifolds in any installation where the fuel gas is used with oxygen for welding, cutting, heating and heat treating operations.

In this type of installation (Fig. 2), the hydraulic back-pressure valve is fastened to the wall, and the manifold control assembly is mounted on brackets in front of the hydraulic. Two "S" extensions are used to lead back from the inlet connection on the manifold control to the headers on the wall.

NOTE: The H-12-3M cannot be used for installations in which delivery pressures exceed 75 psi. The R-67 (200) Regulator has a maximum delivery capacity in excess of 75 psi and therefore should not be used when the manifold is equipped with the H-12-3M Hydraulic.

e. A globe-type pipeline shutoff valve and an RV-29 Pressure Relief Valve, as described in Secs. I-A-3 and I-B-4 and 5. The RV-29 Pressure Relief Valve is supplied with the H-12-3M Hydraulic Back-Pressure Valve, and an additional relief valve is not required.
FIG. 1 – Wall Mounting of M-26, and M-27 Single-Regulator Manifolds; also M-28 and M-29 Without Hydraulic Back-Pressure Valve
I. INSTALLATION PROCEDURE

A. Wall Mounting of M-26, M-27 Manifolds; also M-28 and M-29 When Used Without H-12-3M Hydraulic Back-Pressure Valve (Refer to Figure 1)

1. Mount the control assembly on the wall.
 (a) Mark the position of the mounting bolts on the wall, as shown in Fig. 1. Work from floor level to establish the position of one bolt, and align the other one with it, using a level.

 (b) Drill holes of appropriate size in the wall for the mounting bolts. In concrete or brick walls, use 3/8-in. bolts and expansion shields. In hollow tile walls, use 3/8-in. bolts extended through the entire wall, secured with a nut which bears against a steel plate on the far side of the wall.

 (c) Take up the slack in the bolts until only about 1/4-inch of shank length is visible on the panel side.

 (d) Carefully lift the control assembly into the position at which the enlarged portion of each of the slotted holes in the control back plate can pass cleanly over the bolt heads. Allow the control assembly to slide gently down into place so that the shanks of the mounting bolts are in the narrow part of the mounting slots, supporting the entire weight of the control assembly.

 (e) Secure the control assembly firmly to the wall by tightening each bolt with a wrench.

2. Attach the inlet adaptor to the inlet tee on the manifold control, and attach the outlet tube to the outlet block, in the position indicated in Figs. 5 and 6 by broken lines. Tighten the connection nuts with a wrench. Now attach the regulator to the inlet adaptor and the outlet tube, following the procedure described in the Maintenance Instructions, Sec. III-D, on page 10.

 Although Figs. 5 and 6 actually show the mounting arrangement for the R-60 Series Regulators, the mounting for the R-32 and R-44 regulators is equally simple; they use a straight inlet adaptor to connect the inlet tee to the inlet fitting at the back of the regulator body, rather than the 90° inlet adaptor used to engage the inlet fitting on the side of the R-60 series bodies, as shown in Figs. 5 and 8. See page 14 for the part numbers of the appropriate inlet adaptors and outlet tubes for the various regulators.

3. Connect the manifold outlet block to the distribution piping system. A pressure relief valve and a globe-type shutoff valve must be installed in the piping system at the manifold outlet block. The pressure relief valve should be located between the manifold outlet and the pipeline shutoff valve.

4. On the M-28 and M-29, connect a vent pipe to the outlet of the pressure relief valve, and run this piping to a point outside of the building. This piping must be good quality, standard weight, galvanized steel pipe with galvanized fittings; must be of the same size as the relief valve vent outlet for its entire length; must terminate no less than 12 feet above the ground at a location remote from windows or openings into buildings, and as far as possible from flues or chimneys. The end must be fitted with a return bend or elbow opening downward, preferably screened or otherwise protected from obstruction by snow, ice, birds, and insects, and be located at least 3 feet from combustible construction. The vent pipe must be installed without traps, and is not to be connected to any other piping. It is recommended that a long screw or malleable iron union be installed in the vent pipe just above the relief valve.

5. Mount the required extensions and manifold-to-cylinder leads.
 (a) Insert the nipplet end of the first wall extension in each bank as far as it will go into the manifold inlet connection on the side of the control assembly. Tighten the connection nuts with a wrench. Mark the location of the extension mounting holes, and then disconnect the extensions.

 (b) Drill mounting holes in the wall for the extension mounting bolts.

 (c) Reassemble the extensions to the manifold control, and bolt them firmly to the wall.

 (d) Follow the same procedure with all subsequent extensions; never connect another extension until the previous one has been firmly bolted to the wall. Seal the last extension in each header with the plug provided.

 (e) Attach the manifold-to-cylinder leads to the connections on each header, and tighten the connection nuts with a wrench.

 CAUTION: Do not use excessive force in tightening extension or cylinder lead connection nuts with a wrench. The connections have metal-to-metal seats; too much torque may distort their threads or seats.

 LEAK TESTING of all manifold connections is carried out after the manifold-to-cylinder leads have been attached to the cylinders (see Sec. II-A-7). In addition, all cylinder connections in a bank are tested after each change of cylinders (see Sec. II-C-4). A detailed description of leak testing procedure is included in the Maintenance Instructions (Sec. III-A, B).
FIG. 3 – Schematic Diagram of M-26 to M-29 Single-Regulator Manifolds

* NOT SUPPLIED WITH MANIFOLD CONTROL ASSEMBLY

WITHOUT HYDRAULIC BACK-PRESSURE VALVE WITH HYDRAULIC BACK-PRESSURE VALVE

FIG. 4 – Operating Controls of M-26 to M-29 Single-Regulator Manifolds (See Fig. 3 for details of H-12-3M Hydraulic Back-Pressure Valve as used on M-28 and M-29 Fuel Gas Manifolds)
(Continued from page 7)

C-4. Open the cylinder valves. This is now the reserve bank. Test all cylinder connections in the newly-connected bank for leaks, using OXWELD No. 23 Leak Test Solution or a solution of Ivory soap and water.

D. Shutting Down the Manifold

D-1. Close the header valves. Leave the pipeline shutoff valve open.

D-2. Leave the regulator pressure-adjusting screw in its normal operating position. If the pressure-adjusting screw is released for a long period of time while pressure remains in the chamber of the regulator, the regulator valve seat may become distorted.

D-3. For long shutdowns (those over one day) close the cylinder valves.

D-4. Tag the operating bank so that it can be identified as the bank which is supplying gas, when service is resumed.

E. To Start the Manifold Up Again

Before proceeding to place the manifold in service, make sure that all station outlet valves on the piping system are closed, and that no one will attempt to supply gas-consuming equipment from them until normal operating conditions are re-established.

E-1. Be sure that the pipeline shutoff valve is open.

E-2. Slowly open the header valve on the operating (tagged) bank only.

E-3. Slowly open the valves on all cylinders in both banks of the manifold, starting with the valves on the cylinders nearest the regulator.

E-4. When the piping system has been filled to normal pressure, give notice that the system is in operating condition.

E-5. After use of gas has begun, check the reading on the delivery pressure gauge for the regulator, to make sure the regulator is adjusted to supply the piping system at the desired pressure. Disregard any small increase in delivery pressure, but if it has decreased, slowly turn the regulator pressure-adjusting screw clockwise until the gauge indicates the desired delivery pressure.

III. MAINTENANCE INSTRUCTIONS

A. Checking the Manifold for Leaks

1. Close all outlet valves on the distribution piping system.

2. Open the valves of all cylinders in both banks of the manifold.

3. Make sure the header valve is open for the bank which is in operation.

4. Turn the regulator pressure-adjusting screw clockwise about 1/8 of a turn.

5. Apply OXWELD No. 23 Leak Test Solution or a solution of Ivory soap and water to all connections on the cylinders, leads, extensions, and to all connections on the manifold control, and examine them closely for leaks.

6. If a leaking connection is found, release all pressure from the bank. Then tighten the connection without using excessive force. Retest. If the connection still leaks, disconnect the parts, and wipe the metal seating surfaces of each half of the connection with a clean, grease-free, lint-free rag. If either of the seating surfaces is scored, replace the damaged part. Make up the connection again and retest as described above.

B. Header Valves (see Fig. 8)

1. Test both header valves for leakage by applying OXWELD No. 23 Leak Test Solution or a solution of Ivory Soap and water to the threaded connections between the valve body and the stuffing box (Part No. 52277), between the stuffing box and the packing screw (Part No. 4215), and between the packing screw and the valve stem (Part No. 32Y84). Bubbling of the solution indicates leakage.

2. To disassemble a header valve, first back off the valve stem slightly by turning the handwheel counter-clockwise. Then remove the handwheel and unscrew the entire valve stem unit by unscrewing the stuffing box (Part No. 52277) from the valve body.

3. Examine the gasket (Part No. 94Z06) for defects, and replace it if necessary.

4. Now unscrew the packing screw (Part No. 4215) from the stuffing box. The valve stem (Part No. 32Y84) can now also be unscrewed from the stuffing box, thereby removing the packing (Part No. 4217) and the two washers (Part No. 4216) with it. Examine the packing and washers for defects, and replace them if necessary.

5. To reassemble a header valve, first seat the gasket (Part No. 94Z06) in the valve body. Then screw in the stuffing box (Part No. 52277) and tighten it in place.
FIG. 6 – Single-Regulator Manifold Control Assembly

M-27 – Part No. 25X19
M-28 – Part No. 25X20
M-29 – Part No. 25X21
FIG. 7 – Inlet Connection Assembly
Part No. 25X01 (R.H.)
Part No. 25X02 (L.H.)

NOTE:
IN VALVES OF EARLIER DESIGN,
REPLACEMENT OF ANY PART
(EXCEPT DIAPHRAGM PART NO.
3061-L) REQUIRES CONVERSION
TO CURRENT DESIGN. CONVERSION
KIT PART NO. 33Y83 INCLUDES
ALL PARTS KEYED IN THE PARTS
PICTURE.
DIAPHRAGM 3061-L IS STILL
AVAILABLE FOR REPLACEMENT
IN VALVES OF EARLIER DESIGN.

FIG. 8 – Inlet Valve Assembly
Part No. 21X59 (R.H.)
Part No. 21X60 (L.H.)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>24287</td>
<td>HANDWHEEL</td>
</tr>
<tr>
<td>6331-0100</td>
<td>NUT</td>
</tr>
</tbody>
</table>
Replacement Parts List

FOR
"OXWELD" M-26, M-27, M-28 and M-29
SINGLE-REGULATOR MANIFOLDS

<table>
<thead>
<tr>
<th>Control Assembly</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-26</td>
<td>25X18</td>
<td>(Fig. 5)</td>
</tr>
<tr>
<td>M-27</td>
<td>25X19</td>
<td></td>
</tr>
<tr>
<td>M-28</td>
<td>25X20</td>
<td>(Fig. 6)</td>
</tr>
<tr>
<td>M-29</td>
<td>25X21</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>21X59</td>
<td>Inlet Valve Assembly (R.H.) M-26 only (2 used)</td>
</tr>
<tr>
<td>21X60</td>
<td>Inlet Valve Assembly (L.H.) M-27, M-28, M-29 only (2 used)</td>
</tr>
</tbody>
</table>

Included in 21X59 and 21X60 (see Fig. 8)

4215	Packing Screw
4216	Packing Washer (2 used)
4217	Valve Packing
33Y84	Valve Stem Assembly
52277	Stuffing Box
94206	Stuffing Box Gasket

| 25X01 | Inlet Connection Assembly (L.H.) M-26 only (2 used) |
| 25X02 | Inlet Connection Assembly (L.H.) M-27, M-28, M-29 only (2 used) |

Included in 25X01 and 25X02 (see Fig. 5)

11Z25	Connection - R.H. (25X01 only)
11Z28	Connection - L.H. (25X02 only)
83Z31	Connection Body - R.H. (25X01 only)
83Z32	Connection Body - L.H. (25X02 only)

| 11Y01 | Dust Plug, Chain and Ring Assembly for M-26 only (2 used) |
| 11Y02 | Dust Plug, Chain and Ring Assembly for M-27, M-28, M-29 only (2 used) |

Included in 11Y01 and 11Y02:

32A28	Nipple
45A25	Washer
05Y06	Chain
37Z72	Nut - R.H. (11Y01 only)
37Z75	Nut - L.H. (11Y02 only)
93Z04	Ring
S-D-PK-U-15	#6 x 3/8-in. Parker-Kalon Type "U" Drive Screw

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Y01</td>
<td>Outlet Block Assembly</td>
</tr>
<tr>
<td>10Z55</td>
<td>Includes:</td>
</tr>
<tr>
<td>60Y02</td>
<td>Inlet Tee Connection (M-26 only)</td>
</tr>
<tr>
<td>60Y12</td>
<td>Inlet Tee Assembly (M-27, M-28, M-29 only)</td>
</tr>
</tbody>
</table>

Included in 60Y02 and 60Y12:

03Z94	Nipple (2 used)
11Z41	Connection - R.H. (60Y02 only)
11Z42	Connection - L.H. (60Y12 only)
37Z77	Nut - R.H. (60Y02 only) (2 used)
37Z75	Nut - L.H. (60Y12 only) (2 used)
47Z26	Tubing (Long)
47Z27	Tubing (Short)
60Y11	90-deg. Inlet Adaptor Assembly (M-26 only)
24Z87	Handwheel (2 used)
66Z22	Valve Mounting Block (2 used)
68Z41	Spacer (2 used)
82Z98	Mounting Plate

HARDWARE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-SE-E-51</td>
<td>1/4-in.-20 Steel Elastic Stop Nut</td>
</tr>
<tr>
<td>N-SE-E-53</td>
<td>5/16-in.-24 Steel Elastic Stop Nut</td>
</tr>
<tr>
<td>S-FI-308</td>
<td>5/16-in.-24 x 3/4-in. Lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-FI-310</td>
<td>5/16-in.-24 x 1-in. Lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-FI-311</td>
<td>5/16-in.-24 x 1-1/8-in. Lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-H-55</td>
<td>5/16-in.-24 x 2-1/4-in. Lg. Hex-Head Steel Cap Screw (4 used)</td>
</tr>
</tbody>
</table>

SUPPLY PART

71Z31 | No. 85 Wrench

Regulators and Required Connection Fittings

(For regulator replacement parts and maintenance instructions, see the instruction booklet supplied with the regulator)

<table>
<thead>
<tr>
<th>For Manifold Control Assembly</th>
<th>Use OXWELD Regulator</th>
<th>Inlet Adaptor Assembly Part No.</th>
<th>Outlet Tube Assembly Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Part No.</td>
<td>Max. Delivery Pressure, psi</td>
<td>Symbol</td>
</tr>
<tr>
<td>M-26</td>
<td>25X18</td>
<td>75</td>
<td>R-64-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>R-65-A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>R-32</td>
</tr>
<tr>
<td>M-27</td>
<td>25X19</td>
<td>75</td>
<td>R-67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>R-67(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>R-44</td>
</tr>
<tr>
<td>M-28</td>
<td>25X20</td>
<td>75</td>
<td>R-67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>R-67(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>R-44</td>
</tr>
<tr>
<td>M-29</td>
<td>25X21</td>
<td>30</td>
<td>R-75</td>
</tr>
</tbody>
</table>
Header Extensions

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>For Manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>25X03</td>
<td>MX-1 Straight One-Cylinder Extension</td>
<td>M-26</td>
</tr>
<tr>
<td>25X04</td>
<td>MX-2 Straight One-Cylinder Extension</td>
<td>M-27, M-28, M-29</td>
</tr>
<tr>
<td>25X05</td>
<td>MX-3 Curved (90 deg.) One-Cylinder Extension</td>
<td>M-26</td>
</tr>
<tr>
<td>25X06</td>
<td>MX-4 Curved (90 deg.) One-Cylinder Extension</td>
<td>M-27, M-28, M-29</td>
</tr>
</tbody>
</table>

Manifold-to-Cylinder Leads

NOTE: The "For Use With" column in the table is merely a rough guide, and should never be used alone to determine the type of lead required for a given type of gas cylinder. At least two different types of cylinder valve connections are in use for each kind of fuel gas on the market. The only sure way to order manifold-to-cylinder leads is to specify both the type of gas for which they will be used and the exact thread size and thread direction (R.H. or L.H.) of the valve connection on the cylinders. Leads other than those listed below can be supplied on special order.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>For Use With</th>
<th>Direction of Threads at Header End of Lead</th>
<th>Cylinder Correction Threads</th>
<th>For Manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>25X09</td>
<td>Argon and nitrogen in cylinders with oxygen valves</td>
<td>R.H.</td>
<td>.903 in.-14 R.H.Ext.</td>
<td>M-26</td>
</tr>
<tr>
<td>25X33</td>
<td>Oil-Pumped Inert Gas (LINDE)</td>
<td>L.H.</td>
<td>.903 in.-14 L.H.Ext.</td>
<td>M-27</td>
</tr>
<tr>
<td>25X35</td>
<td>‡ PYROFAX "R" (Vertical Outlet)</td>
<td>L.H.</td>
<td>.885 in.-14 L.H.Int.</td>
<td>M-29</td>
</tr>
<tr>
<td>25X36</td>
<td>Water-Pumped Inert Gas (CGA) and helium in cylinders with right-hand connections</td>
<td>R.H.</td>
<td>.965 in.-14 R.H.Int.</td>
<td>M-26</td>
</tr>
<tr>
<td>25X37</td>
<td>Oil-Pumped Inert Gas (CGA)</td>
<td>L.H.</td>
<td>.965 in.-14 L.H.Int.</td>
<td>M-27</td>
</tr>
<tr>
<td>25X38</td>
<td>Propane, butane (Horizontal Outlet) (CGA)</td>
<td>L.H.</td>
<td>.885 in.-14 L.H.Int.</td>
<td>M-29</td>
</tr>
<tr>
<td>25X39</td>
<td>Carbon Dioxide (Washer 53Z03 supplied)</td>
<td>L.H.</td>
<td>.825 in.-14 R.H.Ext. (Flat Seat)</td>
<td>M-27</td>
</tr>
<tr>
<td>25X40</td>
<td>Propane, butane (Horizontal Outlet)(Std.)</td>
<td>L.H.</td>
<td>.825 in.-14 R.H.Ext. (60-deg.conical seat)</td>
<td>M-29</td>
</tr>
</tbody>
</table>

‡ To permit use of cylinders larger than 12 inches in diameter, such as PYROFAX "R" cylinders, this lead is made with a double expansion loop. By straightening alternate leads to remove one loop, cylinders up to 15 inches in diameter can be used.

Hydraulic Back-Pressure Valve and Mounting Accessories for M-28, M-29 Manifolds

(cannot be used for installations in which delivery pressures exceed 75 psi)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>06P67</td>
<td>H-12-3M Hydraulic Back-Pressure Valve (for replacement parts and maintenance instructions, see the instruction booklet supplied with the valve)</td>
</tr>
<tr>
<td>25X07</td>
<td>MX-5 One-Cylinder "S" Extension (2 used)</td>
</tr>
<tr>
<td>68Z46</td>
<td>Wall Mounting Brackets for Manifold Control Assembly (2 used)</td>
</tr>
</tbody>
</table>

Parts Supplied (with H-12-3M Back Pressure Valve)

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11P64</td>
<td>RV-29 Pressure Relief Valve (for replacement parts and maintenance instructions, see the instruction booklet supplied with the valve)</td>
</tr>
</tbody>
</table>
LINDE Supplies These Quality Products to the Nation's Industries

INDUSTRIAL GASES
LINDE Oxygen, Nitrogen, Argon, Neon, Helium, Krypton, Xenon, Hydrogen, and mixtures
PREST-O-LITE Acetylene

CALCIUM CARBIDE
UNION Calcium Carbide
CARBIC Processed Carbide

OXY-ACETYLENE EQUIPMENT
OXWELD Apparatus for Cutting, Joining, Treating, and Forming Metals
Acetylene Generators
Manifolds, Regulators and Valves
Welding Rods and Supplies
PREST-O-WELD Welding and Cutting Apparatus
PUROX Welding and Cutting Apparatus
PREST-O-LITE Air-Acetylene Apparatus and Small Tanks
CARBIC Acetylene Generators

ELECTRIC WELDING EQUIPMENT
UNIONMELT Automatic Welding Apparatus and Supplies
HELIARC Welding and Cutting Torches
LINDE Sigma Welding Equipment

SPECIAL EQUIPMENT
LINDE Jet-Piercing Equipment
Plate-Edge Preparation Equipment
Steel-Conditioning Machines
Sub-Zero Cold Treatment Equipment
OXWELD Oxy-Acetylene Cutting Machines
Pressure-Welding Machines
PREST-O-LITE Cylinders, Shells, and Shapes

OXYGEN THERAPY SUPPLIES
LINDE Oxygen U.S.P.
Oxygen Regulators
OXWELD Oxygen Manifolds and Valves

SPECIAL PRODUCTS
LINDE Synthetic Sapphire, Ruby, Spinel, and Titania
Fine Alumina Abrasive
Molecular Sieves

LINDE OFFICES
General Office
30 East 42nd Street, New York 17, N. Y.

Eastern States
BALTIMORE 18, MD., 532 East 25th Street
BOSTON (Needham Hts.), 94, Mass., 300 First Avenue
BUFFALO 2, N. Y., 250 Delaware Ave.
CHARLESTON 1, W. Va., 2 Virginia Street
NEW YORK 17, N. Y., 205 East 42nd Street
PHILADELPHIA 22, PA., 1421 North Broad Street
PITTSBURGH 22, PA., 644 The Oliver Building

Central States
CHICAGO 1, ILL., 230 North Michigan Avenue
CINCINNATI 29, OHIO, 709 Maleh Avenue
CLEVELAND 14, OHIO, 1300 Lakeside Avenue
DETROIT 21, MICH., 10421 West Seven Mile Road
INDIANAPOLIS 4, IND., 729 North Pennsylvania Street
MILWAUKEE 46, WIS., 1623 South 38th Street
MINNEAPOLIS 2, MINN., 827 Second Avenue, South
ST. LOUIS 8, MO., 4228 Forest Park Boulevard

Southern States
ATLANTA 1, GA., 22 Seventh Street, N.E.
BIRMINGHAM 9, ALA., 2900 Cahaba Road
JACKSONVILLE 3, FLA., 2410 Dennis Street
MEMPHIS 5, TENN., 48 West McLemore Avenue
NEW ORLEANS 13, LA., 828-32 Howard Avenue

Southwestern States
DALLAS 1, TExAS, 2526 Commerce Street
DENVER 9, COLO., 20 South Broadway
HOUSTON 11, TEXAS, 6119 Harrisburg Boulevard
KANSAS CITY 5, MO., 910 Baltimore Avenue
TULSA 3, OKLA., 614 National Bank of Tulsa Bldg.

Western States
LOS ANGELES (Vernon) 58, CALIF., 2770 Leonis Blvd.
PHOENIX, ARIZ., 401 East Buchanan Street
PORTLAND 9, ORE., 1205 Northwest Marshall Street
SALT LAKE CITY 1, UTAH, 436 W. Ninth, South, Street
SAN FRANCISCO 5, CALIF., 22 Battery Street
SEATTLE 4, WASH., 3404 Fourth Avenue, South
SPOKANE 12, WASH., 2023 West Maxwell Avenue

In Canada
LINDE AIR PRODUCTS COMPANY
Division of Union Carbide Canada Limited
General Office: 40 St. Clair Ave., E., Toronto 7, Canada
TORONTO 4, ONTARIO, 805 Davenport Road
MONTREAL 30, QUEBEC, 3737 St. James St. W.
VANCOUVER 6, B. C., 1175 Grant Street
ST. BONIFACE, MANITOBA, 733 Tache Avenue

Outside United States and Canada
Linde Department
UNION CARBIDE INTERNATIONAL COMPANY
A Division of Union Carbide and Carbon Corporation
30 East 42nd Street, New York 17, N. Y., U. S. A.
GENEVA, SWITZERLAND, Union Carbide Europa, S. A., 1-3 rue de Chanepeoulou
MEXICO 15, D. F., MEXICO, National Carbon-Eveready
S. A., Calzado Mariano Escobedo No. 543

LINDE AIR PRODUCTS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
General Office: 30 East 42nd Street, New York 17, N. Y.
Sales Offices in Principal Cities—See Adjoining Column

Lithographed in U. S. A.
F-9428-B IMD J-5312-56