INSTRUCTIONS and PARTS LIST
for
Oxweld
Trade-Mark

M-25
SINGLE-REGULATOR OXYGEN MANIFOLD

Listed Under Re-examination Service of Underwriters' Laboratories, Inc.
Approved and Listed by Factory Mutual Laboratories

CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>III. MAINTENANCE INSTRUCTIONS</td>
</tr>
<tr>
<td>3</td>
<td>A. Checking the Manifold for Leaks</td>
</tr>
<tr>
<td>I. INSTALLATION PROCEDURE</td>
<td>B. Header Valves</td>
</tr>
<tr>
<td>3</td>
<td>C. Removal of Regulator for Repair</td>
</tr>
<tr>
<td>II. OPERATING INSTRUCTIONS</td>
<td>D. To Replace the Regulator After It Has Been Repaired</td>
</tr>
<tr>
<td>5</td>
<td>A. Initial Starting</td>
</tr>
<tr>
<td></td>
<td>B. To Set the Reserve Bank in Operation</td>
</tr>
<tr>
<td></td>
<td>C. To Replace the Empty Cylinders</td>
</tr>
<tr>
<td></td>
<td>D. Shutting Down the Manifold</td>
</tr>
<tr>
<td></td>
<td>E. To Start the Manifold Up Again</td>
</tr>
<tr>
<td></td>
<td>IV. GENERAL PRECAUTIONS</td>
</tr>
<tr>
<td></td>
<td>REPLACEMENT PARTS LIST</td>
</tr>
</tbody>
</table>

Be sure this information reaches the operator. You can get extra copies through any Linde office.
IMPORTANT

This booklet contains instructions for installing and operating the OXWELD M-25 Oxygen Manifold. Read it and keep it for future use. If you are not familiar with the general principles of operation and safe practices, which should be understood before using oxy-acetylene equipment, we recommend your reading the OXWELD Instruction Manual (in addition to these instructions) which you can obtain without charge from any LINDE office.

Use no oil or grease on this manifold. Oil or grease, if subjected to oxygen under pressure, may ignite and burn with explosive violence. Oxy-acetylene apparatus does not require lubrication.

Oxygen manifolds should be installed and operated in accordance with the "Standards of The National Board of Fire Underwriters for the Installation and Operation of Gas Systems for Welding and Cutting," NBFU Pamphlet No. 51.

For complete information covering the design and installation of oxygen piping and distribution systems, we recommend that you see Form 5110, "Instructions for Design and Installation of Oxygen Distribution and Piping Systems." This booklet is available without charge from any LINDE office.

The terms "Oxweld" and "Linde" are registered trade-marks of Union Carbide and Carbon Corporation.
INTRODUCTION

Purpose

The OXWELD M-25 Single-Regulator Oxygen Manifold is designed to furnish an almost continuous supply of LINDE oxygen to distribution piping systems in industrial shops, welding schools and other installations whose operations will not be hindered by the slight service interruption encountered in shutting down an empty bank of cylinders and cutting in a full bank.

The M-25 has two separate “headers” or cylinder banks, each of which can be cut in or out of service by opening or closing its header valve. The two banks can therefore be operated alternately or simultaneously, and the manifold can continue in operation even if one bank is cut out for repairs or maintenance.

Description

A complete M-25 manifold installation consists of:

a. A manifold control assembly, consisting of two header valves, an inlet tee assembly, through which both headers feed oxygen into a two-stage regulator, and then into an outlet block assembly. These components and their interconnecting piping are mounted on a back plate which has slotted holes to fit over two mounting bolts.

The regulator is not furnished with the control assembly. It must be ordered separately, along with suitable connection fittings (inlet adaptor, outlet tube) to meet the delivery pressure and flow rate requirements for which the manifold is intended. The OXWELD R-64 and R-65 Regulators are normally used (see page 11), but the OXWELDR-32 can also be used where greater flow capacity is required.

An inlet connection on each side of the control provides for the connection of one cylinder lead and also for the addition of extensions to increase the manifold’s capacity as desired.

b. Two “headers,” each consisting of a number of threaded extensions determined by the number of cylinders to be manifolded, and the type of layout desired. Each extension accommodates one cylinder lead; the last extension will also take another lead parallel to the mounting surface, but this requires careful rebending of the manifold-to-cylinder lead. If not used, the last connection is sealed with a plug assembly (provided).

Straight extensions are employed to build up rows of cylinders along the mounting surface; a curved extension is used to extend a header around a corner, as shown in Fig. 1. Where wall space is not available, a floor-type installation on an “A” frame can be set up, using “tee” extensions to establish a second row of cylinders parallel to the first. For further information on this type of arrangement, consult your LINDE dealer.

c. Manifold-to-cylinder leads (one for each cylinder). The type of lead used depends upon the kind of cylinder to be manifolded.

d. A globe-type pipeline shutoff valve and a safety relief valve, as described in Sec. I-C.

I. INSTALLATION PROCEDURE

NOTE: The procedure described here is for a simple wall mounting as shown in Fig. 1. Where sufficient wall space is not available, consult your LINDE dealer for information on a floor-type mounting on an “A” frame.

A. Mount the Control Assembly on the Wall

1. Mark the position of the mounting bolts on the wall, as shown in Fig. 1. Work from floor level to establish the position of one bolt, and align the other one with it, using a level.

2. Drill holes of appropriate size in the wall for the mounting bolts. In concrete or brick walls, use 3/8-in. bolts and expansion shields. In hollow tile walls, the 3/8-in. bolts should pierce the entire wall, and be anchored with a nut behind a steel plate on the far side.

3. Take up the slack in the bolts until only about 1/4 inch of shank length is visible on the panel side.

4. Carefully lift the control assembly into the position at which the enlarged portion of each of the slotted holes in the control back plate can pass cleanly over the bolt heads. Allow the control assembly to slide gently down into place so that the shanks of the mounting bolts are in the narrow part of the mounting slots, supporting the entire weight of the control assembly.

5. Secure the control assembly firmly to the wall by tightening each bolt with a wrench.

B. Attach the inlet adaptor to the inlet tee on the manifold control, and attach the outlet tube to the outlet block, in the position indicated in Fig. 4 by broken lines. Now attach the regulator to the inlet adaptor and the outlet tube, following the procedure described in the Maintenance Instructions, Sec. III-D, on page 8.

Although Fig. 4 actually shows the mounting arrangement for the R-64 and R-65 Regulators, mounting for the R-32 regulator is equally simple; it uses a straight inlet adaptor to connect the in-

(Continued on page 5)
NOTE "A" – 4 ft. 3½-in. for LINDE "K" cylinder. For other types of cylinders, this dimension is obtained by subtracting 1-1/8-in. from the distance between the floor and the centerline of the cylinder valve outlet.

FIG. 1 – Wall Mounting of M-25 Single-Regulator Oxygen Manifold
(Continued from page 3)

let tee to the inlet fitting at the back of the regulator body, rather than the 90° inlet adaptor used to engage the inlet fitting on the side of the R-64 and R-65 bodies, as shown in Fig. 4. See page 11 for the part numbers of the appropriate inlet adaptors and outlet tubes for the various regulators.

C. Connect the manifold outlet block to the distribution piping system. A pressure relief valve and a globe-type pipeline shutoff valve must be installed in the piping system at the manifold outlet block. The pressure relief valve should be between the manifold outlet and the pipeline shutoff valve.

D. Mount the required extensions and manifold-to-cylinder leads.

1. Insert the nipple end of the first wall extension in each bank as far as it will go into the manifold inlet connections on each side of the control assembly. Tighten the connection nuts with a wrench. Mark the location of the extension mounting holes, and then disconnect the extensions.

2. Drill mounting holes in the wall for the extension mounting bolts.

3. Reassemble the extensions to the manifold control, and bolt them firmly to the wall.

4. Follow the same procedure with all subsequent extensions. Never connect another extension until the previous one has been firmly bolted to the wall. Seal the last extension in each header with the plug provided.

5. Attach the manifold-to-cylinder leads to the connections on each header, and tighten the connection nuts with a wrench.

CAUTION: Do not use excessive force in tightening extension or cylinder lead connection nuts with a wrench. The connections have metal-to-metal seats; too much torque may distort their threads or seats.

II. OPERATING INSTRUCTIONS (Refer to Figs. 2 and 3)

Each of the two manifold banks feeds through a separate header valve into the regulator, which controls the pressure delivered to the distribution piping system. Either bank may be cut out of service by merely closing its header valve, and the two banks may therefore be used either alternately or simultaneously.

The instructions given here are for alternate operation, in which the service interruption is limited to the time needed to shut down the empty bank and cut in the full bank. Simultaneous use of both banks will provide longer periods of uninterrupted service, but the manifold will be out of service completely while both empty banks of cylinders are replaced.

![Schematic Diagram of M-25 Single-Regulator Manifold](image)

*NOT Supplied with Manifold Control Assembly.

FIG. 2 – Schematic Diagram of M-25 Single-Regulator Manifold
A. Initial Starting

A-1. Before attaching the manifold-to-cylinder leads to the cylinders, open or "crack" each cylinder valve slightly for an instant, to blow out any dirt which may be lodged in the cylinder valve outlet; then close the valve. Place the cylinders in position with their valve outlets facing outward.

A-2. Connect the cylinders to the extensions by means of the manifold-to-cylinder leads. Tighten the connection nuts at both ends of the leads with a wrench.

A-3. Release the pressure-adjusting screw on the regulator by turning it counter-clockwise until it turns freely.

A-4. Fully open one of the header valves.

A-5. Close the pipeline shutoff valve.

A-6. Slowly open the valves on all cylinders in both banks of the manifold, starting with the valves on the cylinders nearest the regulator.

A-7. Test both banks of the manifold for leaks, as described in Maintenance Instructions, Secs. III-A and B.

A-8. Turn the regulator pressure-adjusting screw clockwise until the delivery pressure gauge indicates a pressure 5 lb. per sq. in. above the desired delivery pressure. (Because this regulator adjustment is made under no-flow conditions, it is not possible to set up the exact delivery pressure desired. In practice, a 5 lb. oversetting will give approximately the desired delivery pressure when flow is established.)

A-9. Make sure all outlet valves on the distribution piping system are closed.

A-10. When operations are ready to begin, open the pipeline shutoff valve.

The manifold is now ready to deliver oxygen. The operating bank will feed oxygen to the piping system until the pressure in its cylinders becomes insufficient to supply the piping system at the required pressure. The reserve bank must then be cut in, and the empty cylinders replaced with full ones.

B. To Set the Reserve Bank in Operation

B-1. Close the header valve on the empty bank. Leave the pressure-adjusting screw in its normal operating position.

B-2. Open the header valve on the full bank.

C. To Replace the Empty Cylinders

C-1. Close the valves on all empty cylinders.

C-2. Disconnect the cylinders from the manifold-to-cylinder leads.

C-3. Connect full cylinders to the manifold-to-cylinder leads, as described in Secs. II-A-1 and 2.

C-4. Open the cylinder valves. This is now the reserve bank. Test all cylinders in the newly-connected bank for leaks, using OXWELD No. 23 Leak Test Solution or a solution of Ivory soap and water.

FIG. 3 – Operating Controls of M-25 Single-Regulator Oxygen Manifold
D. Shutting Down the Manifold

D-1. Close the header valves. Leave the pipeline shutoff valve open.

D-2. Leave the regulator pressure-adjusting screw in its normal operating position. If the pressure-adjusting screw is released for a long period of time while pressure remains in the chamber of the regulator, the regulator valve seat may become distorted.

D-3. For long shutdowns (those over one day) close the cylinder valves.

D-4. Tag the operating bank so that it can be identified as the bank which is supplying oxygen, when service is resumed.

E. To Start the Manifold Up Again

Before proceeding to place the manifold in service, make sure that all station outlet valves on the piping system are closed, and that no one will attempt to supply oxygen-consuming equipment from them until normal operating conditions are re-established.

E-1. Be sure that the pipeline shutoff valve is open.

E-2. Slowly open the header valve on the operating (tagged) bank only.

E-3. Slowly open the valves on all cylinders in both banks of the manifold, starting with the valves on the cylinders nearest the regulator.

E-4. When the piping system has been filled to normal pressure, give notice that the system is in operating condition.

E-5. After use of oxygen has begun, check the reading on the delivery pressure gauge for the regulator, to make sure the regulator is adjusted to supply the piping system at the desired pressure. Disregard any small increase in delivery pressure, but if it has decreased, slowly turn the regulator pressure-adjusting screw clockwise until the gauge indicates the desired delivery pressure.

III. MAINTENANCE INSTRUCTIONS

A. Checking the Manifold for Leaks

1. Close all outlet valves on the distribution piping system.

2. Open all the cylinder valves on both sides of the manifold.

3. Make sure the header valve is open for the bank which is in operation.

4. Turn the pressure-adjusting screw clockwise about 1/8 of a turn.

5. Apply OXWELD No. 23 Leak Test Solution or a solution of Ivory soap and water to all connections on the cylinders, leads, extensions, and to all connections on the manifold control, and examine them closely for leaks.

6. If a leaking connection is found, release all pressure from the bank. Then tighten the connection without using excessive force. Retest. If the connection still leaks, disconnect the parts, and wipe the metal seating surfaces of each half of the connection with a clean, grease-free, lint-free rag. If either of the seating surfaces is scored, replace the damaged part. Make up the connection again and retest as described above.

B. Header Valves (see Fig. 6)

1. Test both header valves for leakage by applying OXWELD No. 23 Leak Test Solution or a solution of Ivory Soap and water to the threaded connections between the valve body and the stuffing box (Part No. 52277), between the stuffing box and the packing screw (Part No. 4215), and between the packing screw and the valve stem (Part No. 33Y84). Bubbling of the solution indicates leakage.

2. To disassemble a header valve, first back off the valve stem slightly by turning the handwheel counter-clockwise. Then remove the handwheel and unscrew the entire valve stem unit by unscrewing the stuffing box (Part No. 52277) from the valve body.

3. Examine the gasket (Part No. 94Z06) for defects, and replace it if necessary.

4. Now unscrew the packing screw (Part No. 4215) from the stuffing box. The valve stem (Part No. 33Y84) can now also be unscrewed from the stuffing box, thereby removing the packing (Part No. 4217) and the two washers (Part No. 4216) with it. Examine the packing and washers for defects, and replace them if necessary.

5. To reassemble a header valve, first seat the gasket (Part No. 94Z06) in the valve body. Then screw in the stuffing box (Part No. 52277) and tighten it in place.

6. Sandwich the packing (Part No. 4217) between the two washers (Part No. 4216) and slip all three parts onto the handwheel end of the valve stem (Part No. 33Y84). Now screw the valve stem into the stuffing box.

7. Slipping the packing screw (Part No. 4215) onto the valve stem, screw it into the stuffing box, and tighten it in place.

8. Retest the header valves for leakage, as previously described in Step #1.
C. Removal of Regulator for Repair (Fig. 4)

1. Close the header valves.
2. Turn in the regulator pressure-adjusting screw.
3. Close the pipeline shutoff valve.
4. Slowly loosen the connection nut near the regulator on the outlet tube to relieve the pressure inside the regulator; then remove the outlet from the regulator.
5. Loosen the connection nut between the inlet adaptor assembly and the regulator, and shut the regulator off.

6. For regulator repair instructions, see the booklet supplied with the regulator.

D. To Replace the Regulator After It Has Been Repaired

1. Position the regulator so that the nippled ends of the outlet tube and the inlet adaptor assembly can be inserted into the matching connections of the regulator. Run the connection nuts onto the regulator connection threads by hand as far as possible. Tighten both nuts with a wrench.

IV. GENERAL PRECAUTIONS

A. NEVER, NEVER use oxygen for compressed air, or as a source of pressure.

B. Oxygen should NEVER be used in pneumatic tools, in oil preheating burners, to start internal combustion engines, to blow out pipelines, to "dust" clothing or work, as a substitute for air in ventilation, or for head pressure in a tank of any kind.

C. Always call oxygen by its proper name - "oxygen." Oxygen should never be called "air" and should never be confused with compressed air.

D. Never lubricate any part of the manifold. Oil or grease, if subjected to oxygen under pressure, may ignite and burn with explosive force.

E. Do not attempt to operate an oxygen manifold which is in need of repair. For repairs and replacements other than those mentioned in the M-25 Instruction Booklet, send the apparatus to the nearest repair station of Linde Air Products Company.
FIG. 4 – M-25 Single-Regulator Oxygen Manifold Control Assembly – Part No. 25X17
FIG. 5 – Inlet Connection Assembly – Part No. 25X01

NOTE
EARLIER MODEL VALVES WITH SPRING LOADED SPINDLE CAN BE CONVERTED TO USE A NEW STYLE STEM ASSEMBLY FOR CONVERSION, ORDER PART NO. 33Y83 WHICH INCLUDES 4215, 4216, 4217, 33Y84, 52Z77 AND GASKET 94Z06.

FIG. 6 – Inlet Valve Assembly – Part No. 21X59
Replacement Parts List

FOR "OXWELD" M-25 SINGLE-REGULATOR OXYGEN MANIFOLD

Manifold Control Assembly (Fig. 4), Part No. 25X17

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>21X59</td>
<td>Inlet Valve Assembly - R.H. (2 used) - see Fig. 6</td>
<td>60Y02</td>
<td>Inlet Tee Assembly Includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packing Screw</td>
<td>03Z94</td>
<td>Nipple (2 used)</td>
</tr>
<tr>
<td>4215</td>
<td></td>
<td>11241</td>
<td>Connection (R.H.)</td>
</tr>
<tr>
<td>4216</td>
<td>Packing Washer(2 used)</td>
<td>37Z72</td>
<td>Nut (R.H.) (2 used)</td>
</tr>
<tr>
<td>4217</td>
<td>Valve Packing</td>
<td>47Z26</td>
<td>Tubing (long)</td>
</tr>
<tr>
<td>33Y84</td>
<td>Valve Stem Assembly</td>
<td>47Z27</td>
<td>Tubing (short)</td>
</tr>
<tr>
<td>52Z77</td>
<td>Stuffing Box</td>
<td>24Z87</td>
<td>Hand Wheel (2 used)</td>
</tr>
<tr>
<td>94Z06</td>
<td>Stuffing Box Gasket</td>
<td>68Z222</td>
<td>Valve Mounting Block (2 used)</td>
</tr>
<tr>
<td>25X01</td>
<td>Inlet Connection Assembly (2 used) - see Fig. 5</td>
<td>68Z41</td>
<td>Spacer (2 used)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82Z88</td>
<td>Mounting Plate</td>
</tr>
</tbody>
</table>

HARDWARE

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-SE-E-51</td>
<td>1/4-In.-20 Steel Elastic Stop Nut</td>
</tr>
<tr>
<td>N-SE-E-53</td>
<td>5/16-In.-24 Steel Elastic Stop Nut</td>
</tr>
<tr>
<td>S-FL-308</td>
<td>5/16-In.-24 x 3/4-In. lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-FL-310</td>
<td>5/16-In.-24 x 1-In. lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-FL-311</td>
<td>5/16-In.-24 x 1-1/8-In. lg. Flat-Head Machine Screw (4 used)</td>
</tr>
<tr>
<td>S-H-55</td>
<td>5/16-In.-24 x 2-1/4-In. lg. Hex-Head Steel Cap Screw (4 used)</td>
</tr>
</tbody>
</table>

SUPPLY PART

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>71Z51</td>
<td>No. 85 Wrench</td>
</tr>
</tbody>
</table>

Regulators and Required Connection Fittings

<table>
<thead>
<tr>
<th>OXWELD Oxygen Regulator</th>
<th>Part No.</th>
<th>Max. Delivery Pressure, psi</th>
<th>Inlet Adaptor Assembly Part No.</th>
<th>Outlet Tube Assembly Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-64</td>
<td>03X05</td>
<td>75</td>
<td>60Y11</td>
<td></td>
</tr>
<tr>
<td>R-64-C</td>
<td>03X13</td>
<td>75</td>
<td>60Y33</td>
<td>60Y14</td>
</tr>
<tr>
<td>R-65</td>
<td>03X06</td>
<td>150</td>
<td>60Y11</td>
<td></td>
</tr>
<tr>
<td>R-65-C</td>
<td>03X14</td>
<td>150</td>
<td>60Y33</td>
<td></td>
</tr>
<tr>
<td>R-32</td>
<td>6481</td>
<td>200</td>
<td>4636</td>
<td>60Y38</td>
</tr>
</tbody>
</table>

Header Extensions

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>25X03</td>
<td>MX-1 Straight One-Cylinder Extension</td>
</tr>
<tr>
<td>25X05</td>
<td>MX-3 Curved (90 deg.) One-Cylinder Extension</td>
</tr>
</tbody>
</table>

Manifold-to-Cylinder Leads

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>25X09</td>
<td>For U.S. Oxygen Cylinders (.903 in.-14 R.H. Connection Threads)</td>
</tr>
<tr>
<td>25X42</td>
<td>For Dominion Oxygen Cylinders (.850 in.-14 R.H. Connection Threads)</td>
</tr>
</tbody>
</table>
LINDE Supplies These Quality Products
to the Nation's Industries

INDUSTRIAL GASES
LINDE Oxygen, Nitrogen, Argon, Neon, Helium, Krypton, Xenon, Hydrogen
PREST-O-LITE Acetylene

CALCIUM CARBIDE
UNION Carbide
CARBIC Processed Carbide

OXY-ACETYLENE EQUIPMENT

ELECTRIC WELDING EQUIPMENT
UNIONMELT Automatic Welding Apparatus and Supplies Heliarc Welding Torches LINDE Sigma Welding Equipment

SPECIAL EQUIPMENT
LINDE Jet-Piercing Equipment Plate-Edge Preparation Equipment Polyethylene Powder and Flame-Spraying Equipment Steel-Conditioning Machines Sub-Zero Cold Treatment Equipment OXWELD Oxy-Acetylene Cutting Machines Pressure-Welding Machines PREST-O-LITE Cylinders, Shells, and Shapes

OXYGEN THERAPY SUPPLIES
LINDE Oxygen U.S.P. Oxygen Regulators OXWELD Oxygen Manifolds and Valves

SYNTHETIC CRYSTALS
LINDE Synthetic Sapphire, Ruby, Spinel, and Titania Fine Alumina Abrasive

SILICON CHEMICALS
LINDE Silicone Oils and Resins Silanes

LINDE AIR PRODUCTS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION

General Office: 30 East 42nd Street, New York 17, N. Y.
Sales Offices in Principal Cities—See Adjoining Column

LINDE OFFICES

General Office
30 East 42nd Street, New York 17, N. Y.

Eastern States
BALTIMORE 18, MD., 532 East 25th Street
BOSTON (Needham Hgts.) 94, Mass., 300 First Avenue
BUFFALO 2, N. Y., 250 Delaware Ave.
CHARLESTON 1, W. VA., 2 Virginia Street
NEW YORK 17, N. Y., 205 East 42nd Street
PHILADELPHIA 22, PA., 1421 North Broad Street
PITTSBURGH 22, PA., 644 Henry W. Oliver Building

Central States
CHICAGO 1, Ill., 230 North Michigan Avenue
CINCINNATI 19, OHIO, 709 Melish Avenue
CLEVELAND 14, OHIO, 1300 Lakeside Avenue
DETROIT 21, MICH., 10421 West Seven Mile Road
INDIANAPOLIS 4, INDIAN., 729 North Pennsylvania Street
MILWAUKEE 46, WIS., 1623 South 38th Street
MINNEAPOLIS 2, MINN., 827 Second Avenue, South
ST. LOUIS 8, MO., 4228 Forest Park Boulevard

Southern States
ATLANTA, GA., 310 Peachtree Street, N. E.
BIRMINGHAM 2, ALA., P. O. Box 196
JACKSONVILLE 3, FLA., 1910 Dennis Street
MEMPHIS 5, TENN., 48 West Mclemore Avenue
NEW ORLEANS 13, LA., 828-90 Howard Avenue

Southwestern States
DALLAS 1, TEXAS, 2626 Commerce Street
DENVER 9, COLO., 685 South Broadway
HOUSTON 11, TEXAS, 6119 Harrisaubg Boulevard
KANSAS CITY 5, MO., 910 Baltimore Avenue
TULSA 3, OKLA., 614 National Bank of Tulsa Bldg.

Western States
LOS ANGELES (Vernon) 58, CALIF., 2770 Leona's Blvd.
PHOENIX, ARIZ., 401 East Buchanan Street
PORTLAND 9, ORE., 1205 Northwest Marshall Street
SALT LAKE CITY 3, UTAH, 436 W. Ninth, South Street
SAN FRANCISCO 6, CALIF., 22 Battery Street
SEATTLE 4, WASH., 3404 Fourth Avenue, South
SPOKANE 12, WASH., 2223 West Maxwell Avenue

In Canada
LINDE AIR PRODUCTS COMPANY
Division of Union Carbide Canada Limited
40 St. Clair Ave. E., Toronto 7, Canada

Outside United States and Canada
Linde and Alloys Department
UNION CARBIDE INTERNATIONAL COMPANY
A Division of Union Carbide and Carbon Corporation
30 East 42nd Street, New York 17, N. Y., U. S. A.