Instructions and Parts Data for the

HELIAARC

HW-12 (SERIES 2)

500-AMPERE

HAND-WELDING TORCH

HW-12 (SERIES 2)

CONTENTS

INTRODUCTION 2

I. SETTING UP THE HW-12 TORCH TO WELD 3
 A. Required Accessories 3
 B. Optional Accessories 4
 C. Hose Connections 5
 D. Electrical Setup 5
 E. Metal Nozzles, Ceramic Cups, Electrodes, Collet Bodies and Electrode Collets 7
 F. Final Steps Before Welding 8

II. GENERAL NOTES ON TORCH OPERATION 8
 A. Torch Cooling System 8
 B. Torch Hose 8
 C. Do Not Let the Nozzle Touch the Work 9
 D. Nozzle Compound 9
 E. Keep the Electrode Clean 9

III. SAFETY PRECAUTIONS 9

IV. DISASSEMBLY 9

V. PARTS LIST 10
 A. Replacement Parts 10
 B. Accessories 10
 C. Hose Repair and Replacement 11
 D. Modernizing Series 1 Torches 11

Be sure this information reaches the operator. You can get extra copies through any Linde office.
Introduction

The "HELIARC" HW-12 Torch

... is a heavy-duty, water-cooled hand-welding torch for use with straight-polarity direct current (DCSP), reverse-polarity direct current (DCRP), or high-frequency stabilized alternating current (ACHF).

... is primarily designed for heavy-duty welding of material requiring welding currents of 300 to 500 amperes. Lighter materials may also be welded using reduced currents, proper size collets and collet body assemblies, and smaller electrodes.

... has a rated current capacity of 500 amp. in continuous service. Higher currents may be used at reduced duty cycles.

... uses either metal nozzles for longer service life, or ceramic cups (see Sec. 1-E for recommendations).

Design Features

... Efficient water-cooling system cools outer surface of collet body directly with flowing water. Metal nozzles are cooled by heat transfer to the torch body across a tapered seat and threaded connection.

... Enclosure of water flow passages within torch prevents flow constriction or leakage through accidental damage. Elimination of bulky external cooling tubes to nozzle improves operator's visibility, torch maneuverability, and access to confined spaces.

... Torch parts are readily disassembled for cleaning of water-cooling components. Straight internal flow passages are easily cleared with a cleaning rod.

... Quick-release collets require only a quarter turn of the torch cap to release the electrode for adjustment or replacement. No wrench is required, and adjustment of the electrode through the torch cap rather than through a hot gas cup prevents burning of the operator's fingers.

... Electrode stub loss is minimized by decreasing the distance between the end of the metal nozzle and the bottom of the electrode to the shortest length for which satisfactory water-cooling can be provided.

... Molded nylon torch body insulation has excellent heat resistance. The torch does not require additional asbestos shielding to protect it against reflected heat.

... Uniform shielding gas distribution pattern requires less argon for good shielding. In many cases, a smaller nozzle can be substituted for the nozzle ordinarily required at a given current, permitting better access to confined spaces.

... Small post-weld electrode cooling time is required, due to efficient water-cooling and minimized exposed electrode length. This reduces the argon volume required to prevent oxide contamination of the electrode while cooling, and is especially important where the operation consists primarily of short welds.

... Either 3-in. or 7-in. electrodes may be used by mounting short or long interchangeable torch caps.

The terms HELIARC, LINDE and OXWELD are registered trade-marks of Union Carbide and Carbon Corporation.
I. Setting Up The HW-12 Torch To Weld

The HELIARC HW-12 Torch is furnished with:
1. 12-1/2-ft. Power Cable and Hose Assembly
2. 12-1/2-ft. Argon and Water Hose Assembly
3. 1/8- and 1/4-in. Collet Bodies
4. A Collet Body Wrench
5. Power Cable Adaptor Assembly which connects to a standard 4/0 welding cable lug.
6. Nozzle Insulator Sleeve

A. Required Accessories

The following accessories are required to place the torch in operation:

1. Either a metal nozzle or ceramic cup (see recommendations in Sec. I, Paragraph E). A Cup Adaptor (Part No. 19Z71) is required when standard ceramic cups are used.

2. Electrode and Collet of corresponding size. Table I indicates the correct electrode size for each welding current range. Pure tungsten and thoriated tungsten electrodes are available from LINDE. A 1/16-in. collet body assembled in the HW-12 as furnished holds 1/8-, 3/32-, and 1/4-in. collets. (Standard 1/4-in. collet body assembled in the HW-12 as furnished holds 1/8-, 3/32-, and 1/4-in. HW-12 collets.) A Collet Body Wrench (Part No. 60Y04) for changing collet bodies is supplied with the torch.

3. Short Torch Cap (Part No. 58Y45). This cap is required when the torch is used with 3-in. electrodes, especially where access to confined spaces is required.

4. An OXWELD R-502 Regulator with Flowmeter (Part No. 05X90). An OXWELD L-23 Flowmeter, together with any standard oxygen cylinder regulator, such as an OXWELD R-64, may be substituted for the R-502. In some cases, this alternate arrangement may require an Adaptor (Part No. 18X55) as indicated in Fig. 1.

5. A source of cooling water (see Sec. II, Paragraph A for information on cooling water requirements) and a disposal drain.

6. Two Adaptors (Part No. 10Z30, 1/4-in. N.P.T. to Air Water Hose Connection) are required, to connect the water inlet hose to the water supply line, and the water outlet hose to the drain line. If an actual threaded connection to a drain pipe is not required (for example, where the water outlet hose empties into a sink) only one adaptor is needed.

7. OXWELD Wrenches No. 83 (Part No. 71Z49) and No. 84 (Part No. 71Z50) for assembling equipment.

8. A source of electric power. (See Sec. I, Paragraph D for information on electric power requirements.)

9. A welding transformer and a high-frequency generator, if ACHF is used for welding; a welding generator, if DCSP or DCRP is used.

10. Suitable lengths of 4/0 welding cable to connect the welding transformer or generator to the torch and work.

11. A clamp to ground the welding cable to the work.

12. A welder's helmet with the correct glass for the welding current to be used:

<table>
<thead>
<tr>
<th>Glass No.</th>
<th>Welding Current, amps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Up to 30</td>
</tr>
<tr>
<td>8</td>
<td>30 to 75</td>
</tr>
<tr>
<td>10</td>
<td>75 to 200</td>
</tr>
<tr>
<td>12</td>
<td>300 to 400</td>
</tr>
<tr>
<td>14</td>
<td>Above 400</td>
</tr>
</tbody>
</table>

B. Optional Accessories

The following optional accessories are offered for use with the HW-12 Torch:

1. Flow Switch, Torch Saver II (Part No. 40V51) to protect the torch from overheating, where water supply pressure may fluctuate. (See Figure 1.)

2. An OXWELD V-30 Double Shutoff Valve (Part No. 16X21). (See Figure 1.)

3. A 1/4-in. Argon Hose Assembly either 12-1/2 ft. long (Part No. 10Y72) or 25 ft. long (Part No. 10Y88), for connecting the regulator to the V-30 valve. (See Figure 1.)

4. Two 1/4-in. Water Hose Assemblies, either 12-1/2 ft. long (Part No. 10Y93) or 25 ft. long (Part No. 10Y94), for connecting the V-30 valve to the water supply line (optional) and for connecting the water outlet of the power cable adaptor (or water outlet of pressure switch, if used) to the drain. Lengths of 1/4-in. pipe may be used instead of hose, if desired.

5. For extension of the 12-1/2 ft. hose supplied with the HW-12, additional hose assemblies (like those listed in Paragraphs 3 and 4 above) will be required, as well as an Argon Hose Coupling (Part No. 6978) and a Water Hose Coupling (Part No. 11Z15).

6. A transparent Torch Cap (Part No. 56Y84). This cap, used with 7-in. electrodes, enables the welder to judge the length of the remaining electrode without removing the torch cap.
FIG. 1 – Schematic Diagram of Water and Argon Connections for HELIARC HW-12 Torch

V-30 Double Shutoff Valve (16X21). If not used, connect water inlet hose assembly directly to water supply line, and argon inlet hose assembly to R-502 Regulator or equivalent.

Argon Hose Assembly, 12-1/2 ft. (10Y72) or 25 ft. (10Y68) to connect V-30 Valve to R-502 Regulator. Additional lengths may be added as needed using Argon Hose Coupling (6978) for each length added.

R-502 Argon Regulator with Flowmeter (05X90), L-23 Flowmeter with R-64 or other equivalent regulator may be substituted.

Argon Cylinder

Water Supply Line

Argon Inlet Hose Assembly (54Y94)

Water Inlet Hose Assembly (54Y95)

HELIARC HW-12 Torch (16X37)

Power Cable and Hose Assembly (54Y65)

Power Cable Adaptor Assembly (84287)

4/0 Welding Cable to Welding Generator.

Flow Switch, Torch Saver II (40V81). If not used, connect power cable adaptor directly to water outlet hose.

Drain – if actual threaded connection between water outlet hose assembly and drain pipe is required, use Adaptor (10Z30).

When a regulator other than the R-502 Argon Regulator with Flowmeter is used, the inlet connection of an L-23 Flowmeter (21X24) is attached to argon outlet connection of V-30 valve, using an Adaptor (18X55). Flowmeter outlet is attached to torch argon inlet hose. L-23 Flowmeter may also be attached directly to regulator, without an adaptor. Regulator is mounted on cylinder so that gauges face upward.

Water Hose Assembly, 12-1/2 ft. (10Y93) or 25 ft. (10Y94) (1/4-in. pipe may be used, if desired). Additional lengths may be added as needed, using water hose coupling (11Z15) for each length added.
C. Hose Connections

Fig. 1 indicates the correct method of assembling the accessories used to supply argon and cooling water to the HW-12 Torch. Detailed instructions covering the mounting and use of each individual accessory are packed with the equipment.

D. Electrical Setup

1. Power Requirements
 a. For a.c. welding, a single-phase transformer requiring a 230- or 460-volt, alternating current supply is generally used.
 b. For d.c. welding, a motor-generator or rectifier unit powered by a 230- or 460-volt, 3-phase alternating current supply is generally used.

NOTE: Be sure to obtain manufacturer’s recommendations on power requirements for your transformer, rectifier or generator.

2. Special Control Circuits: Several special control circuits have been developed to automatically control various phases of the welding process. By use of these circuits, you can conserve argon and water, reduce radio interference when using high-frequency current, and provide greater convenience of operation. For specific details, call or write your nearest LINDE office. A booklet (Form 9067) giving descriptions of the circuits and specifications for the equipment needed will be sent to you without charge upon request.

3. Electrical Connections: Before making any connections, refer to the schematic wiring diagrams for alternating current and direct current welding setups (Figures 2 and 3). Note that a foot or torch switch can be connected in the control circuit to interrupt welding current. If no foot switch is used, the arc can be broken by lifting the torch from the work. However, this method is a poor one for use in machine welding. A foot switch also enables you to shut off welding current without removing the argon protection at the end of a seam, thus controlling crater cracking (especially when welding high-temperature alloys). In an ACHF setup, the use of a foot switch cuts out the high-frequency generator whenever you are not actually welding. This eliminates the radio interference caused by open circuit operation.

Connections for A. C. Welding (Fig. 2)

a. Connect the torch power cable adaptor to the "torch" terminal of the high-frequency generator with a suitable length of 4/0 welding cable.

b. Connect the workpiece to the "work" terminal of the high-frequency generator with a suitable length
of 4/0 welding cable. Fasten the cable to a clean surface of the workpiece with a clamp. This will give you a good contact.

c. Connect the input terminals of the high-frequency generator to the output terminals of the transformer secondary with suitable lengths of 4/0 cable.

d. Connect the input terminals of the transformer primary to one set of terminals of the main contactor. Then connect the other terminals of the main contactor to the 230- or 460-volt main power supply. Be sure to select a conductor which will carry the maximum current you will use.

e. Connect the high-frequency generator across the primary of the welding transformer if a 230/460 volt generator is used, or across the coil of contactor WC if a 115 volt generator is used. When using a 230/460 volt generator, be sure that the primary jumper links are properly connected for the voltage to be used. This connection is made so that the power to the high-frequency generator is shut off when the welding contactor is open.

f. The control circuit connections shown in the upper part of Figure 2 may be used to provide control of the argon, water, and welding contactor.

NOTE: If the flow switch, Torch Saver II, Part No. 40V51, is used, it should be connected between the coil of the welding contactor and one side of the 115 volt supply line as shown in Figure 2.

g. Make a ground connection from the "work" terminal of the high-frequency generator. MAKE NO OTHER GROUND CONNECTION. Connect the case of the high-frequency generator and the case of the transformer to the "work" terminal of the high-frequency generator.

Connections for D. C. Welding (Fig. 3)

a. Connect a suitable length of 4/0 welding cable between the torch power cable adaptor and the "negative" high-frequency generator terminal for straight-polarity welding. Connect the "positive" terminal of the high-frequency generator to the work. Use suitable lengths of 4/0 welding cable for these connections. For good contact, secure the ground connection to clean bright metal of the workpiece with a clamp.

b. Ground the high-frequency generator case.

c. If you use a generator of the separately-excited type you can shut off welding current remotely without lifting the torch from the work by means of a foot or hand switch. For all other types of

SPECIAL CONTROL CIRCUIT: POWER, ARGON AND WATER (SEE 1:D:2)

<table>
<thead>
<tr>
<th>NOMENCLATURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASV</td>
<td>ARGON SOLENOID VALVE</td>
</tr>
<tr>
<td>BL</td>
<td>BALLAST LAMP</td>
</tr>
<tr>
<td>F1, F2</td>
<td>FUSES</td>
</tr>
<tr>
<td>FS</td>
<td>FLOW SWITCH</td>
</tr>
<tr>
<td>MLS</td>
<td>MAIN LINE SWITCH</td>
</tr>
<tr>
<td>OCR</td>
<td>OPEN CIRCUIT RELAY</td>
</tr>
<tr>
<td>T</td>
<td>TORCH</td>
</tr>
<tr>
<td>TDR</td>
<td>TIME DELAY RELAY</td>
</tr>
<tr>
<td>TRI</td>
<td>TRANSFORMER</td>
</tr>
<tr>
<td>TS</td>
<td>TORCH SWITCH</td>
</tr>
<tr>
<td>TSR</td>
<td>TORCH SWITCH RELAY</td>
</tr>
<tr>
<td>WC</td>
<td>WELDING CONTACTOR</td>
</tr>
<tr>
<td>WSV</td>
<td>WATER SOLENOID VALVE</td>
</tr>
</tbody>
</table>

NOTE: If a motor-generator is used in place of the rectifier illustrated, the welding contactor, (WC) need be only a one-pole contactor. The pole is then placed in the positive leg leading from the generator. (Proceeding the ballast lamp (BL) and open circuit relay (OCR) if high frequency is being used.)

FIG. 3 – Schematic Diagram for HELIARC D.C. Welding
generators, obtain the manufacturer’s recommendations on installing a remote current shutoff.

NOTE: If flow switch (Torch Saver II, Part No. 40V31) is to be used, it should be connected between the welding contactor and one side of the 115 volt line as shown in Figure 3.

d. Connect the input terminals of the rectifier or motor generator to the 230- or 460-volt alternating current main power supply.

E. Metal Nozzles, Ceramic Cups, Electrodes, Collet Bodies and Electrode Collets

1. Metal Nozzles and Ceramic Cups: Four sizes of metal nozzles are used with the HW-12 Torch. The No. 12 Nozzle is used for welding thick sections, particularly where wide shielding gas coverage is desired, for example, in joints with large tolerance gaps. By ordering Cup Adaptor (19Z71) five sizes of ceramic cups may also be used. For the most effective argon protection, select the proper nozzle or cup size according to the recommendations in Table I. Metal nozzles provide longer service life than ceramic cups, and should be used wherever possible in preference to the ceramics. Despite their higher initial cost, they will almost always prove more economical over any appreciable service period.

2. Electrodes: Table I indicates the correct electrodes for various welding ranges. Note that thoriated electrodes are required to obtain rated capacity with ACHF currents. The HW-12 can be used for applications above the 500 amp range only at reduced duty cycles.

3. Collet Bodies: A collet body for 1/8-in. to 1/4-in. collets is supplied assembled in the torch. An accessory collet body for .040-in. to 1/8-in. collets is also supplied with the torch. To change or replace a collet body, see appropriate steps in Section IV.

4. Electrode Collets: Collets are available for seven standard electrode sizes (.040-in. to 1/4-in. diameter). To install a collet and an electrode, proceed as follows:

(a) Remove the torch cap from the torch.

TABLE I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACHF*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pure Tungsten</td>
</tr>
<tr>
<td>0.040</td>
<td>6</td>
<td>4</td>
<td>10-60</td>
</tr>
<tr>
<td>1/16</td>
<td>6</td>
<td>4-5</td>
<td>50-100</td>
</tr>
<tr>
<td>3/32</td>
<td>6-8</td>
<td>6-7</td>
<td>100-160</td>
</tr>
<tr>
<td>1/8</td>
<td>8</td>
<td>6-7-8</td>
<td>150-210</td>
</tr>
<tr>
<td>5/32</td>
<td>8</td>
<td>-</td>
<td>200-275</td>
</tr>
<tr>
<td>3/16</td>
<td>8-10-12</td>
<td>-</td>
<td>250-350</td>
</tr>
<tr>
<td>1/4</td>
<td>10-12</td>
<td>-</td>
<td>325-475</td>
</tr>
</tbody>
</table>

* Cup Adaptor (R19Z71) is required when ceramic cups are used.

* Maximum values for unbalanced wave transformers. Balanced wave reduces maximum by about 30 per cent.

** In general, for DCSP, the lower end of the specified current range applies to the pure tungsten electrodes and the upper end to the thoriated tungsten electrodes.

*** The HW-12 Torch has a maximum rated current capacity of 500 amperes in continuous service for 1 hour. Higher currents may be used at reduced duty cycles.

**** Exceeds capacity of standard Heliarc torches.

NOTE: All current values are metered readings. Transformers designed for metal-arc welding deliver about 15 per cent more current than shown on their scale readings.
(b) Insert a collet for the electrode size you intend to use into the top of the torch head.

c) Insert an electrode of corresponding size into the top of the collet. Allow the electrode to protrude 1/8 - to 3/16-in. beyond the end of the nozzle or cup for butt welding, and 1/4- to 3/8-in. for fillet welding. Then screw the torch cap onto the torch head and tighten it just enough to hold the electrode firmly.

F. Final Steps Before Welding

1. If you are using an R-502 Regulator:

(a) With the regulator flow-adjusting valve closed, slowly open the argon cylinder valve (to prevent a sudden rush of gas into the regulator); then fully open the argon cylinder valve.

(b) Open the regulator flow-adjusting valve until the desired flow is obtained.

2. If you are using an R-64 Regulator and an L-23 Flowmeter:

(a) Back off on the regulator pressure-adjusting screw.

(b) Slowly open the argon cylinder valve; then open it fully.

(c) Adjust the regulator to a 20-lb. delivery pressure.

(d) Open the flowmeter valve to the desired flow.

3. Turn on the cooling water supply. Check to see that the water flows at recommended pressure, volume and temperature (see Sec II-A).

4. Set the welding transformer or generator for the desired welding current.

5. Close the foot or hand switch.

6. Draw a test arc on a heavy piece of scrap steel or copper.

II. General Notes On Torch Operation

A. Torch Cooling System

1. Use Clean Cooling Water

(a) The cooling water which circulates through the torch body and power cable must be clean and free from dirt and other solid material. Otherwise the torch passages may become clogged, thereby cutting off or greatly reducing the flow of cooling water.

(b) If torch water passages become clogged, first remove lower torch-end parts and collet body so that foreign particles may emerge freely. Then flush torch with water, or clean flow passages by inserting a 3/32-in. diameter wire through the hose-connection fittings.

(c) If you cannot avoid using dirty water, install a suitable strainer at the cooling water inlet to prevent further clogging. (A satisfactory strainer is the 1/4-in., Type 340, semi-steel, 60-mesh brass screen, available from Kieley and Mueller Inc., 2013 43rd St., North Bergen, New Jersey. Any other equivalent strainer can be used.)

2. Cooling Water Volume, Inlet Pressure and Temperature Requirements

(a) For adequate cooling of the torch body, nozzle, and torch power cable, a minimum of one quart of cooling water should pass through the cooling system in 35 seconds. (For purposes of calculating water consumption, this volume of cooling water amounts to about 25-1/2 gallons per hour.)

(b) The inlet temperature of the cooling water must not be higher than 60 deg. F.

(c) An inlet water pressure of about 25 psi will generally be sufficient to pass the necessary volume of cooling water.

(d) If inlet water pressure is above 50 psi, a water regulator should be installed to prevent possible damage to the hose. (A satisfactory regulator is the Type 463, 1/4-in. water regulator available from Kieley and Mueller Inc., 2013 43rd St., North Bergen, New Jersey. Any other equivalent regulator can be used.)

(e) If less than one quart of cooling water passes through the cooling system in 35 seconds, or if the cooling water inlet temperature is more than 60 deg. F., do not operate the torch at its full capacity. All restrictions which reduce the flow must be removed and the water inlet temperature must be lowered to 60 degrees to utilize the full torch current rating.

3. Torch Saver II, Part No. 40551. This accessory should be used to protect the torch from overheating in case of water supply fluctuation or failure. When water flow falls below a safe limit, the switch shuts off the welding current until the required flow is restored. Instructions for installation and operation (Form 9743) are packed with each assembly. Additional copies are available without charge from your nearest LINDE office.

B. Torch Hose

1. Make certain that all argon hose connections and the nozzle or cup connections are gas-tight. If they are not, the argon may become diluted by air due to leakage, resulting in incomplete arc protection. The electrode should be silvery in color when it cools. A bluish color denotes
air leakage. When welding aluminum, a dark gray deposit on or beside the weld, or a cloudy weld puddle, indicates air leakage.

2. **Keep hose off hot metal.** Plastic hose softens and begins to lose strength when heated to about 125 deg. F.

3. **For instructions on hose repair and replacement, refer to page 11.**

C. Do Not Let the Nozzle Touch the Work

If a nozzle touches the work, the arc may jump the gap from the electrode to the nozzle rather than to the work because of the conductivity of the hot gases. To avoid this “arc flash-over” which can ruin a metal nozzle, do not allow the nozzle to touch the work or any grounded metal surface.

D. Nozzle Compound

HW-12 Metal Nozzles are dipped in LINDE No. 65 Sigma Nozzle Compound prior to packing. The silicone coating prevents the adherence of spatter to the nozzles and ensures the maintenance of a complete and uniform gas shielding pattern. A four ounce can of this compound (Part No. 68N65) should be obtained to maintain the protective coating on the nozzles.

E. Keep the Electrode Clean

1. If weld spatter sticks to the electrode, a black soot may appear when welding aluminum; or a reddish deposit may appear when you weld stainless steel. To clean the electrode, simply draw an arc for a few seconds on a heavy piece of scrap steel or copper (do not use a carbon block).

2. Should contamination of the electrode occur due to contact with the weld puddle, shut off the power and remove the electrode from the torch. Break off a small piece from the end, and then replace the electrode. Always remove the electrode before breaking it off, to minimize waste of electrodes. It is advisable to nick the electrode slightly with a grinding wheel at the point where the break is to be made. Then remove the contaminated end with pliers gripped close to the nick.

III. Safety Precautions

A. Use a standard welder’s helmet with the proper shade of glass for the welding current to be used (see Table in Sec. 1-A).

B. Wear suitable clothing to protect exposed skin from arc burns.

C. Be sure to shut off power before adjusting or replacing electrodes.

D. When welding copper indoors, provide good ventilation or use a respirator.

E. If you use chlorinated solvents for degreasing or cleaning the workpiece, do not weld near degreasing tanks.

F. Shield your welding station to protect neighboring workers from ultra-violet radiation.

For further details on safety precautions, refer to F-8925, “Precautions and Safe Practices for Electric Welding.”

IV. Disassembly

(See HW-12 Assembly Drawing, Fig. 5)

1. Unscrew the torch cap. Inspect “O” ring (85W50) for nicks, cracks, excessive distortion and flatness. Replace with a new part if defective. This “O” ring acts as a seal against argon leakage and air entrainment.

2. Remove the electrode and electrode collet.

3. Unscrew the nozzle from the water jacket (85Z98).

4. Hold the water jacket adaptor (84Z92) with a strap wrench to keep it from turning, and unscrew the water jacket (85Z98). Inspect insulator gasket (84Z94) and “O” ring (lower 85W55). Replace if defective.

5. Insert the drill rod collet body wrench (60Y04), supplied with the torch, through opposing argon drillings in the collet body. Unscrew collet body (85Z14 or 85Z15) from the torch body. Inspect “O” ring (85W07) without removing it from the torch body (use a beam of light). This “O” ring acts as an important seal between gas and water, but does not normally require replacement.

6. Unscrew water jacket adaptor (84Z92) from the torch body. Inspect “O” ring (upper 85W55). Replace if defective. **THIS STEP IS NOT NECESSARY TO CHANGE OR REPLACE A COLLET BODY.**

7. To reassemble, follow the preceding steps in reverse order. Moisten the upper end of collet body (85Z14 or 85Z15) before screwing into torch body (this assists passage through “O” ring 85W07). The shoulder on the collet body should fit tightly against the lower end of the torch body to assure good electrical contact. Be certain that the water jacket (85Z98) is sufficiently tightened for a leakproof connection.
V. Parts List
FOR
"HELIARC" HW-12 HAND-WELDING TORCH
PART NO. 16X37

A. Replacement Parts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>85W07</td>
<td>"O" Ring</td>
</tr>
<tr>
<td>85W50</td>
<td>"O" Ring (2 used)</td>
</tr>
<tr>
<td>85W55</td>
<td>Powder Cable and Hose Assembly</td>
</tr>
<tr>
<td>54Y65</td>
<td>Argon Inlet Hose Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>54Y94</td>
<td>Water Inlet Hose Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>56Y44</td>
<td>Torch Cap (long)</td>
</tr>
<tr>
<td>56Y65</td>
<td>Torch Body Assembly</td>
</tr>
<tr>
<td></td>
<td>Includes:</td>
</tr>
<tr>
<td>79Z40</td>
<td>Inlet Connection (2 used)</td>
</tr>
<tr>
<td>79Z63</td>
<td>Water Outlet Connection</td>
</tr>
<tr>
<td>57Y09</td>
<td>Sheathing (Zippered)</td>
</tr>
<tr>
<td>60Y04</td>
<td>Collet Body Wrench</td>
</tr>
<tr>
<td>84Z87</td>
<td>Power Cable Adaptor Assembly</td>
</tr>
<tr>
<td>84Z92</td>
<td>Water Jacket Adaptor</td>
</tr>
<tr>
<td>85Z13</td>
<td>Handle</td>
</tr>
<tr>
<td>85Z14</td>
<td>Collet Body (for 1/8-, 5/32-, 3/16-, 1/4-in. Collets)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>85Z98</td>
<td>Water Jacket</td>
</tr>
<tr>
<td>85Z99</td>
<td>Nozzle Insulator Sleeve</td>
</tr>
<tr>
<td>86Z23</td>
<td>Insulator Gasket (one spare supplied)</td>
</tr>
</tbody>
</table>

B. Accessories
(Not Supplied in HW-12 Torch package, Part No. 16X37)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6978</td>
<td>Argon Hose Coupling</td>
</tr>
<tr>
<td>40V51</td>
<td>Torch Saver II, Flow Switch</td>
</tr>
<tr>
<td>10Y72</td>
<td>Argon Inlet Hose Extension Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>10Y93</td>
<td>Water Inlet and Outlet Hose Extension Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>56Y45</td>
<td>Torch Cap (short)</td>
</tr>
<tr>
<td>56Y84</td>
<td>Transparent Torch Cap (long)</td>
</tr>
<tr>
<td>11Z15</td>
<td>Water Hose Coupling</td>
</tr>
<tr>
<td>19Z71</td>
<td>Cup Adaptor (for Ceramic Cups)</td>
</tr>
</tbody>
</table>
NOZZLES, CUPS, AND COLLETS

<table>
<thead>
<tr>
<th>Metal Nozzles</th>
<th>Ceramic Cups</th>
<th>Torch Collets</th>
</tr>
</thead>
<tbody>
<tr>
<td>86Z01 No. 5</td>
<td>85207 No. 4</td>
<td>84Z59 .040-in.</td>
</tr>
<tr>
<td>86Z02 No. 8</td>
<td>85208 No. 5</td>
<td>84Z60 1/16-in.</td>
</tr>
<tr>
<td>86Z03 No. 10</td>
<td>85209 No. 6</td>
<td>84Z61 3/32-in.</td>
</tr>
<tr>
<td>86Z03 No. 12</td>
<td>85210 No. 7</td>
<td>84Z62 1/8-in.</td>
</tr>
<tr>
<td></td>
<td>85Z11 No. 8</td>
<td>85Z16 1/8-in.</td>
</tr>
</tbody>
</table>

C. Hose Repair and Replacement

POWER CABLE-AND-HOSE ASSEMBLY

If the power cable-and-hose assembly becomes damaged, we recommend that you purchase a new assembly or send the damaged cable-and-hose assembly to your nearest LINDE repair station for possible repair. DO NOT ATTEMPT PERMANENT REPAIRS YOURSELF. As with the power cable-and-hose assembly, the connection fittings are crimped on at the factory by special crimping tools to assure a leakproof connection. A completely satisfactory job cannot be done without these tools. Improper repair of an argon hose connection, for example, could cause argon dilution, resulting in incomplete arc protection and consequent unsatisfactory welds. If you must continue to use the torch until new or properly-repaired plastic hose can be installed, temporary repairs can be made as follows:

Cut off the aluminum ferrule. Re-use the original nipple and nut, if undamaged. Before re-inserting the nipple, apply 3M-711 adhesive (Minn. Mining and Mfg. Co.). Secure tubing to nipple with four turns of 18-gauge copper wire. If nut or nipple are damaged, and must be replaced, use parts as follows:

<table>
<thead>
<tr>
<th>HOSE ASSEMBLY</th>
<th>HOSE</th>
<th>TORCH END</th>
<th>SUPPLY END</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon Hose Assembly 54Y94</td>
<td>76Z22</td>
<td>Nut and Nipple Assembly 54Y92</td>
<td>Nut 3380 Nipple 03Z73</td>
</tr>
<tr>
<td>Water Hose Assembly 54Y95</td>
<td>76Z22</td>
<td>Nut and Nipple Assembly 54Y92</td>
<td>Nut 36Z40 Nipple 03Z73</td>
</tr>
</tbody>
</table>

D. Modernizing Series 1 Torches

The Series 1 HW-12 Torch uses Nozzles No. 84Z96 (No. 6), 84Z97 (No. 8), and 84Z98 (No. 10), Water Jacket 56 Y62, and Ceramic Cup Adaptor 19Z61. The Series 2 HW-12 Torch employs a nozzle insulating sleeve, a modified water jacket and ceramic cup adaptor, and a new style nozzle to prevent internal arcing. To convert Series 1 torches to Series 2, order Water Jacket 85Z98, Nozzle Insulating Sleeve 85Z99, and Nozzle 86Z01 (No. 6), 86Z02 (No. 8), 86Z03 (No. 10), or 86Z06 (No. 12). If the torch is to be used with ceramic cups, a new Ceramic Cup Adaptor 19Z71 should also be ordered.
LINDE Supplies These Quality Products to the Nation's Industries

INDUSTRIAL GASES
LINDE Oxygen, Nitrogen, Argon, Neon, Helium, Krypton, Xenon, Hydrogen, and mixtures
PREST-O-LITE Acetylene

CALCIUM CARBIDE
UNION Calcium Carbide
CARBIC Processed Carbide

OXY-ACETYLENE EQUIPMENT
OXWELD Apparatus for Cutting, Joining, Treating, and Forming Metals Acetylene Generators Manifolds, Regulators and Valves Welding Rods and Supplies
PUROX Welding and Cutting Apparatus
PREST-O-LITE Welding and Cutting Apparatus
PREST-O-LITE Air-Acetylene Apparatus and Small Tanks
CARBIC Acetylene Generators

ELECTRIC WELDING EQUIPMENT
UNIONMELT Automatic Welding Apparatus and Supplies
HELIARC Welding and Cutting Torches
LINDE Sigma Welding Equipment

SPECIAL EQUIPMENT
LINDE Jet-Piercing Equipment Plate-Edge Preparation Equipment Steel-Conditioning Machines Sub-Zero Cold Treatment Equipment
OXWELD Oxy-Acetylene Cutting Machines Pressure-Welding Machines
PREST-O-LITE Cylinders, Shells, and Shapes

OXYGEN THERAPY SUPPLIES
LINDE Oxygen U.S.P.
Oxygen Regulators
OXWELD Oxygen Manifolds and Valves

SPECIAL PRODUCTS
LINDE Synthetic Sapphire, Ruby, Spinel, and Titania Fine Alumina Abrasive Molecular Sieves

LINDE OFFICES

General Office
30 East 42nd Street, New York 17, N. Y.

Eastern States
BALTIMORE 18, MD., 532 East 25th Street
BOSTON (Neighborhoods) 94, Mass., 300 First Avenue
BUFFALO 2, N. Y., 250 Delaware Ave.
CHARLESTON 4, W. VA., 3510 MacCorkle Avenue, S. E.
NEW YORK 17, N. Y., 205 East 42nd Street
PHILADELPHIA 22, PA., 1421 North Broad Street
PITTSBURGH 22, PA., 644 The Oliver Building

Central States
CHICAGO 1, ILL., 230 North Michigan Avenue
CINCINNATI 29, OHIO, 709 Melish Avenue
CLEVELAND 14, OHIO, 1300 Lokeside Avenue
DETROIT 21, MICH., 10421 West Seven Mile Road
INDIANAPOLIS 4, IND., 729 North Pennsylvania Street
MILWAUKEE 46, WIS., 1623 South 38th Street
MINNEAPOLIS 2, MINN., 827 Second Avenue, South
ST. LOUIS 8, MO., 4228 Forest Park Boulevard

Southern States
ATLANTA 1, GA., 52 Seventh St., N. E.
BIRMINGHAM 9, ALA., 2900 Cahaba Road
JACKSONVILLE 3, FLA., 2410 Dennis Street
MEMPHIS 5, TENN., 48 West Mclemore Avenue
NEW ORLEANS 13, LA., 828-32 Howard Avenue

Southwestern States
DALLAS 1, TEXAS, 2626 Commerce Street
DENVER 9, COLO., 683 South Broadway
HOUSTON 11, TEXAS, 6179 Harrisburg Boulevard
KANSAS CITY 5, MO., 910 Baltimore Avenue
TULSA 3, OKLA., 614 National Bank of Tulsa Bldg.

Western States
LOS ANGELES (Beverly) 88, CALIF., 2770 Leonis Blvd.
PHOENIX, ARIZ., 401 East Buchanan Street
PORTLAND 9, ORE., 1205 Northwest Marshall Street
SALT LAKE CITY 1, UTAH, 436 W. Ninth South Street
SAN FRANCISCO 6, CALIF., 22 Battery Street
SEATTLE 4, WASH., 3404 Fourth Avenue, South
SPOKANE 12, WASH., 2023 West Maxwell Avenue

In Canada
LINDE AIR PRODUCTS COMPANY
Division of Union Carbide Canada Limited
General Office: 40 St. Clair Ave., E., Toronto 7, Canada
EDMONTON, ALTA., Highway 16 and Government Road
TORONTO 4, ONTARIO, 805 Davenport Road
MONTREAL 9, QUEBEC, 8311 Roydon Road
VANCOUVER 6, B. C., 1175 Grant Street
ST. BONIFACE, MANITOBA, 733 Tache Avenue

Outside United States and Canada
Linde Department
UNION CARBIDE INTERNATIONAL COMPANY
A Division of Union Carbide and Carbon Corporation
30 East 42nd Street, New York 17, N. Y., U. S. A.
GENEVA, SWITZERLAND, Union Carbide Europa, S. A.,
1,3 rue de Chantepoulet
MEXICO 15, D. F. MEXICO, National Carbon-Eveready
S. A., Colonia Mariano Escobedo No. 543

LINDE AIR PRODUCTS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION
General Office: 30 East 42nd Street, New York 17, N. Y.
Sales Offices in Principal Cities—See Adjoining Column