INTRODUCTION

I. SETTING UP THE HW-10 TORCH TO WELD
- A. Equipment Needed
- B. Hose Connections
- C. Electrical Setup
- D. Metal Nozzles, Ceramic Cups, and Electrode Collets
- E. Final Steps Before Welding

II. GENERAL NOTES ON TORCH OPERATION
- A. Cooling Water Requirements
- B. Leakage in the Torch Head
- C. Fuse Installation and Replacement
- D. Torch Hose
- E. Do Not Let the Nozzle Touch the Work
- F. Keep the Electrode Clean
- G. Conservation of Tungsten

III. PRECAUTIONARY INFORMATION
- A. General Information
- B. Fire Protection
- C. Electric Shock Hazards
- D. Burn Hazards
- E. Potential Hazards of Toxic or Noxious Fumes and Gases
- F. Ventilation

IV. DISASSEMBLY
- A. To Disassemble
- B. To Reassemble

REPLACEMENT PARTS LIST
- Hose Repair and Replacement

Be sure this information reaches the operator. You can get extra copies through any Linde office.
INTRODUCTION

The HELIARC HW-10 Torch is designed for hand-welding. It can be used with high-frequency stabilized alternating current, or with straight-polarity direct current. Its current capacity is 300 amperes at a normal welding duty cycle. Tungsten electrodes from 0.40-in. to 1/8-in. diameter are accommodated in the rated current capacity. The torch is available with either a 12-1/2 ft. or 25-ft. length of cable-and-hose assembly.

Both metal nozzles and ceramic gas cups can be used with the HW-10. The metal nozzles are cooled through their screwed connection to a water-cooled jacket. The water jacket, torch body, and power cable are water-cooled by internal passages to eliminate cumbersome hose and fittings which interfere with maneuverability and visibility during welding. Because of this, the torch is lightweight and well balanced for convenient and easy handling. Water-cooling also protects essential parts from excessive heat, thereby giving the torch durability.

Another important feature is quick-release collets for gripping electrodes. These collets make changing or adjusting the electrode a simple operation. To adjust an electrode, the operator merely loosens the torch cap a quarter-turn, positions the electrode, and retightens the cap. This method of electrode adjustment is convenient and time-saving, and does not require the use of any wrenches or special tools.

The torch body passages are accessible for cleaning by simply removing the water-jacket adaptor and collet body from the torch head, and disconnecting the handle and water hose.

I. SETTING UP THE HW-10 TORCH TO WELD

A. Equipment Needed

Check to be sure you have the following before setting up the equipment:

1. HELIARC HW-10 Torch which includes the necessary hose and power cable.

2. An electrode and collet of corresponding size. (See Table I for recommended electrode diameters for different welding current ranges.)

3. A metal nozzle or ceramic cup of the correct size for the welding current you intend to use. (See Table I for recommended nozzle and cup sizes for different welding currents.)

4. Fuse assembly, Part No. 56Y48, (optional) to prevent the torch from overheating if the water supply should fail. It is strongly recommended for use where the water flow fluctuates widely. If a fuse assembly is not used, a power cable adaptor (Part No. 84284) is necessary for connecting the standard 3/0 welding cable to the water-cooled torch cable. One or the other of these accessories must be used to place the torch in operation.

5. Silicone Boot, Part No. 86Z14 (optional). When high-frequency current is used, either for starting or for arc stabilization, the Silicone Boot is slipped over the front end of the torch to prevent high-frequency leakage when the torch is brought close to a grounded metal surface while working in confined areas.

7. An OXWELD R-502 Argon Regulator and Flowmeter (Part No. 03X90). (An OXWELD L-23 flowmeter, together with any standard oxygen cylinder regulator, such as an OXWELD R-64, may be substituted for the R-502.)

8. An OXWELD V-30 Double shut-off Valve (Part No. 16X21).

9. A source of cooling water. (See Part II, Section A, for information on cooling water requirements.)

10. A drain for disposal of cooling water.

11. Additional hose assemblies.

(a) A 1/4-in. argon hose assembly of suitable length for connecting the regulator to the V-30 valve.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Y72</td>
<td>12-1/2 ft.</td>
</tr>
<tr>
<td>10Y68</td>
<td>25 ft.</td>
</tr>
</tbody>
</table>

(b) A 1/4-in. water hose assembly for connecting the V-30 valve to the water supply line. (A 1/4-in. pipe can be used if desired.)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Y93</td>
<td>12-1/2 ft.</td>
</tr>
<tr>
<td>10Y94</td>
<td>25 ft.</td>
</tr>
</tbody>
</table>

12. An OXWELD adaptor (Part No. 10Z30) for connecting the water inlet hose to the water supply line.

13. A source of electric power. (See Part I, Section C, for information on electric power requirements.)

14. A welding transformer and a high-frequency generator, if welding is with alternating current; a welding generator, if welding is with direct current.

15. Suitable lengths of 3/0 welding cable to connect the welding generator to the torch and to the work.

16. A clamp to ground the welding cable to the work.

17. A welder’s helmet with the proper shade of glass for the welding current you intend to use.

<table>
<thead>
<tr>
<th>Glass No.</th>
<th>Welding Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Up to 30 amperes</td>
</tr>
<tr>
<td>8</td>
<td>30 to 75 amperes</td>
</tr>
<tr>
<td>10</td>
<td>75 to 200 amperes</td>
</tr>
<tr>
<td>12</td>
<td>200 to 250 amperes</td>
</tr>
</tbody>
</table>

The terms “Linde,” “Heliarc,” and “Oxweld” are registered trade-marks of Union Carbide and Carbon Corporation.
FIG. 1 - Schematic Diagram of Water and Argon Connections for "Heliarc" HW-10 Torch

FIG. 2 - Schematic Diagram for Heliarc A.C. Welding

NOMENCLATURE

ASV ARGON SOLENOID VALVE
F1,F2 FUSES
FS FOOT SWITCH
MLS MAIN LINE SWITCH
T TORCH
TDR TIME DELAY RELAY
TR1 TRANSFORMER
TSR TRIGGER SWITCH RELAY
W WORKPIECE
WC WELDING CONTACTOR
WSV WATER SOLENOID VALVE

CONNECT TO VOLTAGE
SPECIFIED ON HF GENERATOR NAMEPLATE
B. Hose Connections

Fig. 1 indicates the correct method of assembling the accessories used to supply argon and cooling water to the HW-10 Torch. Detailed instructions covering the mounting and use of each individual accessory are packed with the equipment.

C. Electrical Setup

1. POWER REQUIREMENTS
 (a) For a.c. welding, a single-phase transformer requiring a 230- or 460-volt, alternating current supply, is generally used.
 (b) For d.c. welding, a motor-generator unit powered by a 230- or 460-volt, 3-phase alternating current supply is generally used.

 NOTE: Be sure to obtain manufacturer's recommendations on power requirements for your transformer or generator.

2. SPECIAL CONTROL CIRCUITS Several special control circuits have been developed to automatically control various phases of the welding process. By use of these circuits, you can conserve argon and water, reduce radio interference when using high-frequency current, and provide greater convenience of operation. For specific details, call or write your nearest LINDE office. A booklet (Form 9067) giving descriptions of the circuits, and specifications for the equipment needed will be sent to you without charge upon request.

3. ELECTRICAL CONNECTIONS Before making any connections, refer to the schematic wiring diagram in Figures 2 and 3 for alternating current and direct current welding setups. Note that a foot switch is connected in an external circuit to interrupt welding current. Its use is recommended because it provides a convenient method of control. It also enables you to shut off welding current without removing the argon protection at the end of a seam, thus controlling crater cracking especially when welding high-temperature alloys. If you have an alternating current setup, radio interference caused by high-frequency current will be greatly reduced since no high-frequency current flows when the welding current is shut off. If no foot switch is used, the arc can be broken by lifting the torch from the work. However, this method of control is not as satisfactory for high-temperature alloys.

 CONNECTIONS FOR A.C. WELDING (FIG. 2)
 (a) Connect the fuse assembly or cable adaptor (1) to the "torch" terminal (2) of the high-frequency generator with a suitable length of 3/0 welding cable.
 (b) Connect the workpiece (3) to the "work"
terminal (4) of the high-frequency generator with a suitable length of 3/0 welding cable. Fasten the cable to a clean surface of the workpiece with a clamp. This will give you a good contact.

(c) Connect the input terminals (5) of the high-frequency generator to the output terminals (6) of the transformer secondary with suitable lengths of 3/0 cable.

(d) Connect the input terminals (7) of the transformer primary to one set of terminals (8) of the main contactor. Then connect the other terminals (9) of the main contactor to the 230- or 460-volt main power supply (10). Be sure to select a conductor which will carry the maximum current you will use.

(e) Connect the high-frequency generator (11) to the lines (12) leading from the main contactor to the transformer primary. This connection is made so that power to the high-frequency generator is shut off when the main contactor is open.

(f) Connect one terminal (13) of the main contactor coil to one terminal (14) of the auxiliary contactor. Connect the remaining terminals (15) of the main contactor coil and the auxiliary contactor to opposite sides (16) of the 230- or 460-volt main power supply.

(g) Connect one terminal (17) of the auxiliary contactor coil to one terminal (18) of the foot switch. Connect the remaining terminals (19) of the auxiliary contactor coil and the foot switch to opposite sides (20) of the low voltage a. c. supply. (A control circuit supply of 6 to 24 volts is recommended for safety reasons.)

(h) Make a ground connection (21) from the "work" terminal (4) of the high-frequency generator. MAKE NO OTHER GROUND CONNECTION. Connect the case (22) of the high-frequency generator and the case (23) of the transformer to the "work" terminal (4) of the high-frequency generator.

CONNECTIONS FOR D.C. WELDING (FIG. 2)
(a) Connect a suitable length of 3/0 welding cable between the fuse assembly or cable adaptor (1) and the "negative" generator terminal (2) for straight-polarity welding. Connect the "positive" terminal (3) of the generator to the work (4). Use suitable lengths of 3/0 welding cable for these connections. Secure the ground connection to clean bright metal of the workpiece with a clamp for good contact.

(b) Make separate ground connections (5) to the work (4) and to the generator case (6).

(c) If you use a generator of the separately-excited type shown in Figure 3 you can shut off welding current remotely without lifting the torch from the work by means of a foot or hand switch which actuates a field relay. Parallel the field coil contacts with a 0.25 Mfd, 600-volt discharge condenser. For all other types of generators, obtain the manufacturer's recommendations on installing a remote current shutoff. Connect one terminal (7) of the foot switch to one terminal (8) of the field relay coil. Connect the remaining terminals (9) of the switch and of the field relay coil to opposite sides (10) of the separate control circuit power supply.

(d) Connect the input terminals (11) of the motor side of the welding generator to the 230- or 460-volt alternating current main power supply (12).

D. Metal Nozzles, Ceramic Cups, and Electrode Collets

1. METAL NOZZLES AND CERAMIC CUPS. Five metal nozzles and five ceramic cups are available for general purpose use with the HW-10. Each nozzle or cup size is intended for use with a different welding current range. For the most effective argon protection, select the nozzle or cup size according to the recommendations in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRODE, NOZZLE AND CUP SIZES FOR DIFFERENT WELDING CURRENTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welding Currents, Amps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHF* (using pure tungsten electrodes)</td>
</tr>
<tr>
<td>10-60</td>
</tr>
<tr>
<td>50-100</td>
</tr>
<tr>
<td>100-160</td>
</tr>
<tr>
<td>150-210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrode Diameter</th>
<th>Metal Nozzle No.</th>
<th>Ceramic Cup No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.040</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1/16</td>
<td>4-5</td>
<td>4-5</td>
</tr>
<tr>
<td>3/32</td>
<td>5-6</td>
<td>6-7</td>
</tr>
<tr>
<td>1/8</td>
<td>6-7-8</td>
<td>6-7-8</td>
</tr>
</tbody>
</table>

* Maximum values for unbalanced wave transformers. Balanced wave reduces maximum by about 30 per cent.
** Exceeds capacity of HW-10 Torch.

NOTE: All current values are metered readings. Transformers designed for metal-arc welding deliver about 15 per cent more current than shown on their scale readings.
Two larger bore nozzles are recommended for the HELIARC welding of titanium. The No. 10 Nozzle, Part No. 105224, is recommended for most applications within the current range covered by the torch. The No. 12 Nozzle, Part No. 105225, is recommended for titanium applications which do not receive adequate shielding when a No. 10 nozzle is used.

2. ELECTRODE COLLETS. The electrode collets are designed for quick and simple adjustment of the electrode. They are available for four different electrode sizes (.040-in. to 1/8-in. diameter). Install the collet and electrode as follows:
(a) Remove the torch cap from the torch.
(b) Insert a collet for the electrode size you intend to use into the top of the torch head. Mate the tapered end of the collet with the tapered seat in the torch head.
(c) Insert an electrode of corresponding size into the top of the collet. Allow the electrode to protrude 1/8 to 3/16-in. beyond the end of the nozzle for butt welding, and 1/4 to 3/8-in. for fillet welding. Then screw the torch cap onto the torch head and tighten it to hold the electrode firmly.

E. Final Steps Before Welding
1. Check all argon and water connections for tightness. Turn on the cooling water supply, making certain that the flow is adequate. (See Part II, Section A below for recommended pressure, volume, and temperature.)
2. With the R-502 regulator flow-adjusting valve closed, open the argon cylinder valve.
3. Remove the torch from the V-30 valve arm; then turn the regulator flow-adjusting valve handle counter-clockwise to obtain the desired flow.
4. Set the welding generator or transformer for the desired welding current.
5. Close the foot or hand switch.
6. Draw a test arc on a heavy piece of scrap steel or copper. (Do not use a carbon pencil or carbon block for starting an arc.)

NOTE: When high-frequency current is used, either for starting or arc stabilization, Silicone Boot Part No. 84Z16 is slipped over the front end of the torch to prevent high-frequency leakage when the torch is brought close to a grounded metal surface while working in confined areas. The boot protects the water jacket and water adaptor "O" ring seals from damage due to arcing through these joints. It is not intended to protect the nozzle. The boot will withstand temperatures in excess of 500°F for continuous periods, without burning. However, if an HW-10 torch head should be inserted into a confined pocket, the radiant heat would probably destroy the silicone boot in a relatively short time.

II. GENERAL NOTES ON TORCH OPERATION

A. Cooling Water Requirements
1. USE CLEAN COOLING WATER. The cooling water that circulates through the torch body, water jacket, and cable and hose assembly should be clean and free from dirt or other solid material which might clog the water passages.

If the torch becomes clogged, it can sometimes be flushed out by reversing the connections to reverse the water flow. CAUTION: BE SURE NOT TO WELD WITH WATER FLOW REVERSED. The water should cool the torch body and water jacket before it flows through the cable and hose assembly. If the water flow is reversed when a fuse assembly is used, (1) the inlet water will first cool the fuse and render it inoperative at the temperature for which it was designed, and (2) the temperature of the water flowing to the torch body is too high for effective protection of the torch.

To prevent further clogging, install a strainer, such as the 1/4-in., type 340, semi-steel, 60-mesh brass screen available from Kiely and Mueller, Inc., 2013 43rd Street, North Bergen, N. J., or equivalent.

2. COOLING WATER INLET PRESSURE, VOLUME AND TEMPERATURE. The 300-ampere capacity rating of the torch is based on cooling water flow of one quart per minute at an inlet temperature of 60 deg. F., with 25 psi inlet pressure using 12-1/2 feet of hose and 35 psi inlet pressure using 25 feet of hose. Water pressures up to 50 psi at the inlet of the torch hose can be used. If the inlet water pressure exceeds 50 psi, a regulator should be installed to prevent damage to the plastic hose. A suitable regulator is the type 463, 1/4-in. water regulator available from Kiely and Mueller, Inc., 2013 43rd Street, North Bergen, N. J. (Any equivalent regulator can also be used.)

B. Leakage in the Torch Head
1. "O" ring 84W85 serves as a compression seal between the collet body and the argon gas chamber to prevent water leakage into the argon gas. If this "O" ring becomes damaged, cracked, nicked or flattened, replace it with a new part.
2. "O" ring 85W51 serves as a radial seal between the water-jacket adaptor and the threaded section
of the torch body (see Figs. 4 and 5) to prevent internal and external water leakage. External leakage will occur if the outer seal fails; internal leakage will occur if the inner seal fails. Failure of the inner seal may result in water finding its way between the insulation and the torch-body casting in the torch body. Such a leak may then by-pass the torch cap "O"-ring seal (85W50) and find its way into the argon "well" in the upper section of the torch body. External leakage would show up at the joint formed by the water-jacket adaptor and the torch-body insulation.

3. "O" ring 85W80 serves as a radial seal between the water jacket and the water-jacket adaptor, to prevent external water leakage. If this "O" ring becomes damaged, nicked, cracked or flattened, replace it with a new part.

4. The insulator gasket seals the cooling water from the argon gas. Any leakage of water that can be noticed in the torch head is due to the failure of this gasket seal. Inspect the gasket for nicks, cracks or excessive distortion and replace with a new part, if necessary. Make certain the torch-head parts are reassembled as outlined in Section IV, page 5.

NOTE: In order to protect the insulator gasket from rupturing, DO NOT tighten the Water Jacket excessively. A non-leaking seal can be obtained by moderate tightening of the Water Jacket.

5. "O" ring 85W50 serves as a radial seal between the torch cap and the torch body. It prevents external leakage of argon gas or aspiration of atmospheric air. Inspect this "O" ring for nicks, cracks or excessive wear and replace with a new part, if necessary.

NOTE: Refer to the proper disassembly and assembly procedures outlined in Section IV, page 9.

C. Fuse Installation and Replacement
1. To install a fuse assembly, simply connect the power cable nut to the fuse assembly coupling. Then connect the standard 3/0 welding cable to the fuse assembly lug, and lead the water outlet hose to an open drain.

2. To insert a new fuse, proceed as follows:
(a) Bend the fuse link to a 90-deg. angle about 1/4-in. from one end.
(b) Insert the fuse link in one of the fuse-centering disks and place it into one end of the fuse body.
(c) Replace the lock screw.
(d) Place the other fuse-centering disk at the opposite end of the body, taking care to insert the end of the fuse link through the slot in the disk. Then press the centering disk down into the groove in the fuse body.
(e) Bend the end of the fuse link against the disk and replace the lock screw, tightening it firmly.
(f) Replace the two large end nuts.

3. To replace or inspect a fuse, proceed as follows:
(a) Remove the large nut and lock screw from each end.
(b) If the fuse link is centered properly, a round impression from the lock screw should be visible.
(c) If the fuse link has been caught in the lock screw threads, remove the centering disks and the fuse link. Then replace with a new fuse link, making sure that it is seated properly.
(d) The fuse link (Part No. 84W30) is brass-plated for corrosion resistance. Its use is recommended when replacement becomes necessary. Standard 30-ampere 250-volt links may be used in an emergency but are not recommended for regular operation.

4. Two fuse links must be used to accommodate the 300-ampere capacity rating of the torch.

D. Torch Hose
1. Make certain that all argon hose connections and the gas-cup connections are gas-tight. If they are not, the argon may become diluted by air due to leakage, resulting in incomplete arc protection. The electrode should be silvery in color when it cools. A bluish color denotes air leakage. When welding aluminum, the presence of a dark gray deposit on or beside the weld, or a cloudy weld puddle also indicates air leakage.

2. Keep hose off hot metal. Plastic hose softens and begins to lose strength when heated to about 125 deg. F.
3. For instructions on hose repair and replacement, refer to page 12.

E. Do Not Let the Nozzle Touch the Work

If a nozzle touches the work, the arc may jump the gap from the electrode to the nozzle rather than to the work because of the conductivity of the hot gases. For this reason, hold the torch so that the nozzle does not touch at any point of the work.

F. Keep the Electrode Clean

1. If weld spatter sticks to the electrode, a black soot may appear when welding aluminum; or a reddish deposit may appear when you weld stainless steel. To clean the electrode, simply draw an arc for a few seconds on a heavy piece of scrap steel or copper (do not use a carbon block).
2. Should contamination of the electrode occur, due to contact with the weld puddle, shut off the power and remove the electrode from the torch. Break off a small piece from the end, and then replace the electrode. Always remove the electrode before breaking it off, to minimize waste of electrodes.
3. It is advisable to nick the electrode slightly with a grinding wheel at the point where the break is to be made. Then remove the contaminated end with pliers gripped close to the nick.

G. Conservation of Tungsten

Conserve tungsten electrodes wherever possible. Here’s how:

1. Avoid contamination of electrodes caused by unnecessary contact with the workpiece.
2. Weld stub ends to make electrodes of usable length. Welding can be done with a HELIARC torch, using either DCSP or ACHF, currents from 30 to 100 amperes, argon flow of 13 to 17 cu. ft. per hr.

III. PRECAUTIONARY INFORMATION

A. General Information

Virtually every industrial operation has certain potential hazards. This is just as true of HELIARC welding as it is with any other welding method. Operators should be aware of the potential hazards and observe the necessary precautions for their protection as well as that of their fellow employees and property.

B. Fire Protection

Sparks, spatter, and the heat of welding operations are a potential fire hazard if welding is done near combustible materials. If the work location cannot be moved away from combustible materials, the logical alternatives are to move the combustible materials to a safe location or to protect them from all sources of ignition by non-combustible tarps, partitions or shields.

1. Welding should be done preferably in an area having a concrete floor. Avoid the use of wet sand or metal floor covering since these materials would only create an electric shock hazard.
2. Avoid welding in areas susceptible to infiltration, of combustible vapors or dust.
3. Where welding must be done near wooden construction, be sure that the structure is adequately protected.
4. Welding cables and external electrical connections should be of size approved to carry the maximum load without overheating. Frayed or worn cables should be repaired or replaced immediately to prevent fires caused by short circuiting.
5. Welding of containers which previously held flammable liquids is extremely dangerous unless they are first properly cleaned and purged of all flammable liquids and vapors.

C. Electric Shock Hazards

1. Always shut off power to the welding power supply before cleaning, adjusting, or replacing an electrode, electrode holder, welding head or wire reel. Do not touch any uninsulated torch parts when the power supply is turned on.
2. Overloaded welding cables will overheat and burn the insulation. Eventually, the cable may become exposed and create not only a shock hazard, but a fire hazard as well.
3. Repair or replace leaking water hose immediately.
4. Never wear cotton, asbestos, or other cloth-type gloves when using high-frequency current. Kid, chrome leather, or rubber gloves, when clean and in good condition will give the necessary protection against high-frequency puncture wounds.

D. Burn Hazards

1. Wear a standard arc-welding helmet to protect the eyes, face, and neck from the effects of ultraviolet radiation. The helmet should have the correct shade of lens to avoid eye strain. The recommended shade of lens for various current ranges is given in the Table in Section II.
2. Protect all exposed skin surfaces from arc burn. Operators' sleeves should be rolled down at all times. Wear flameproof gauntlet gloves except in cases where low current values are used. If sweating of the hands is excessive, wear rubber gloves underneath the flameproof gloves to afford protection against accidental electric shock.

E. Potential Hazards of Toxic or Noxious Fumes and Gases

1. **Toxic Materials**

 Do not weld copper, lead, zinc, beryllium copper, or cadmium in a closed or poorly ventilated room.

2. **Chlorinated Solvents**

 Special precautions must be taken when certain chlorinated solvents (such as carbon tetrachloride, trichlorethylene, and tetrachlorethylene) are used for degreasing metals prior to welding. The vapors of these solvents are harmful. When they are exposed to the heat of the welding arc they break down chemically to form highly toxic fumes (phosgene). Make certain that the material is thoroughly dry before welding. It is also important that welding operations be remote from degreasing tanks containing chlorinated solvents since these solvents vaporize readily and the vapors may reach the arc. It has been demonstrated that intense ultra-violet rays will break down trichlorethylene into phosgene.

F. Ventilation

An effective control of fumes and vapors is a local exhaust system which will remove the contaminants before they become diffused with air throughout the work area. An important consideration of an adequate method of ventilation for HELIARC or sigma welding is that it must not disturb the shielding gas stream and thereby result in weld contamination. When highly toxic materials, such as lead-, cadmium-, or beryllium-bearing metals are welded, the operator should use a filter type respirator approved for the specific fume (by the U.S. Bureau of Mines), or an air supplied respirator. The use of an air supplied respirator is also advisable when welding in a closely confined space.

IV. DISASSEMBLY

(Refer to Figures 4 and 5)

A. To Disassemble

1. Unscrew the torch cap (56Y44) to inspect the "O" ring (85W50).
2. Remove the electrode and collet.
3. Unscrew the cup or nozzle from the water jacket (56Y59).
4. Hold the water jacket adaptor (84Z63) with a suitable wrench to keep it from turning. Be careful not to damage the plastic water jacket adaptor. Unscrew the water jacket (56Y59) to inspect the insulator gasket (84Z22) and "O" ring (85W80).
5. Using a 5/16-in. Allen wrench, turn the nut (84Z66) counter-clockwise from the torch body.
6. Pull the collet body (84Z65) out from the front end of the torch body. Inspect the collet body. From the rear of the torch body remove the "O" ring (84W85) and the metal washer (84Z67). Examine the "O" ring and the metal washer for distortion. It is generally recommended that both the "O" ring and the washer should be replaced each time the collet body is removed from the torch body.
7. Unscrew the water jacket adaptor (84Z63) from the torch body to inspect the "O" ring (85W51). Replace if defective.

B. To Reassemble

1. Insert metal washer (84Z67) into the rear of the torch body making sure that the washer rests on the shoulder and lies flat without wrinkles.
2. Insert the "O" ring and locking nut (84Z66) into the rear of the torch body. Tighten the nut until it lightly loads "O" ring (84W85).
3. Replace water jacket adaptor (84Z63).
4. Carefully insert the collet body into the torch body making certain that the neck end engages "O" ring (84W85).
5. Replace the insulator gasket by inserting it into the recess of the water jacket (56Y59). Make sure that the gasket is completely retained in the recess.
6. Screw the water jacket (56Y59) on the water adaptor until the insulator gasket lightly loads the collet body seat.
7. Tighten the locking nut (84Z66) snugly; do not over-tighten.
8. Return to the water jacket (56Y59) retightening until a seal is obtained. NOTE: The insulator gasket will distort if the water jacket is overtightened.
Replacement Parts List

FOR
HW-10 "HELIARC" HAND-WELDING TORCH

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>84W85</td>
<td>"O" Ring</td>
</tr>
<tr>
<td>85W80</td>
<td>"O" Ring</td>
</tr>
<tr>
<td>85W51</td>
<td>"O" Ring</td>
</tr>
<tr>
<td>54Y60</td>
<td>Water Inlet Hose Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>54Y61</td>
<td>Argon Inlet Hose Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>54Y62</td>
<td>Water Inlet Hose Assembly (25 ft.)</td>
</tr>
<tr>
<td>54Y63</td>
<td>Cable and Hose Assembly (12-1/2 ft.)</td>
</tr>
<tr>
<td>55Y70</td>
<td>Argon Inlet Hose Assembly (25 ft.)</td>
</tr>
<tr>
<td>55Y72</td>
<td>Cable and Hose Assembly (25 ft.)</td>
</tr>
<tr>
<td>58Y44</td>
<td>Torch Cap (Long) Includes:</td>
</tr>
<tr>
<td>85W50</td>
<td>"O" Ring</td>
</tr>
<tr>
<td>56Y47</td>
<td>Torch Body Includes:</td>
</tr>
<tr>
<td>79240</td>
<td>Inlet Connection (2 Used)</td>
</tr>
<tr>
<td>79263</td>
<td>Water Outlet Connection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Y59</td>
<td>Water Jacket</td>
</tr>
<tr>
<td>84Z53</td>
<td>Handle</td>
</tr>
<tr>
<td>84Z63</td>
<td>Water Jacket Adaptor</td>
</tr>
<tr>
<td>84Z65</td>
<td>Collet Body</td>
</tr>
<tr>
<td>84Z66</td>
<td>Nut</td>
</tr>
<tr>
<td>84Z67</td>
<td>Washer</td>
</tr>
<tr>
<td>86Z22</td>
<td>Insulator Gasket</td>
</tr>
<tr>
<td>60Y04</td>
<td>Collet Body Wrench</td>
</tr>
</tbody>
</table>

Spare Parts Supplied

- Insulator Gasket — 86Z22
- "O" Ring — 84W85 (3/8" I.D.)
- "O" Ring — 85W80 (3/16" I.D.)
- "O" Ring — 85W51 (1/16" I.D.)

Accessory (Not Supplied)

- 56Y48 — FUSE & HOSE ASSEMBLY
- 84764 — POWER CABLE ADAPTOR — (FOR USE WITHOUT FUSE & HOSE ASSEMBLY)
- Adaptor Thread Sizes
 - 56Y48
 - 84Z53

**Fig. 5 — Type HW-10 "Heliarc" Water-Cooled Welding Torch

16X39 (12½ Ft.)
16X40 (25 Ft.)**
FIG. 6 – Fuse and Hose Assembly, Part No. 56Y48

ACCESSORIES

(These parts must be purchased separately.)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Y48</td>
<td>Fuse and Hose Assembly (Fig. 6) Includes:</td>
</tr>
<tr>
<td>54Y25</td>
<td>Fuse Assembly Includes:</td>
</tr>
<tr>
<td>84W30</td>
<td>Fuse Link (4 Supplied)</td>
</tr>
<tr>
<td>75Z91</td>
<td>Fuse Body</td>
</tr>
<tr>
<td>75Z92</td>
<td>Fuse Disk (2 Used)</td>
</tr>
<tr>
<td>75Z97</td>
<td>Locking Screw (2 Used)</td>
</tr>
<tr>
<td>75Z98</td>
<td>Coupling (2 Used)</td>
</tr>
<tr>
<td>54Y77</td>
<td>Cable and Body Assembly Includes:</td>
</tr>
<tr>
<td>84W83</td>
<td>Lug</td>
</tr>
<tr>
<td>54Y27</td>
<td>Body</td>
</tr>
<tr>
<td>76Z25</td>
<td>Cable</td>
</tr>
<tr>
<td>54Y78</td>
<td>Water Outlet Hose Assembly</td>
</tr>
<tr>
<td>76Z12</td>
<td>Fuse Casing</td>
</tr>
<tr>
<td>84Z84</td>
<td>Power Cable Adaptor</td>
</tr>
<tr>
<td>84Z16</td>
<td>Silicone Boot</td>
</tr>
</tbody>
</table>

ELECTRODE COLLETS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>84Z59</td>
<td>.040-in. Collet</td>
</tr>
<tr>
<td>84Z80</td>
<td>.1/16-in. Collet</td>
</tr>
<tr>
<td>84Z61</td>
<td>3/32-in. Collet</td>
</tr>
<tr>
<td>84Z62</td>
<td>1/8-in. Collet</td>
</tr>
</tbody>
</table>

NOZZLES AND CUPS

<table>
<thead>
<tr>
<th>Nozzles</th>
<th>Ceramic Cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>84Z54</td>
<td>No. 4 Nozzle</td>
</tr>
<tr>
<td>84Z55</td>
<td>No. 5 Nozzle</td>
</tr>
<tr>
<td>84Z56</td>
<td>No. 6 Nozzle</td>
</tr>
<tr>
<td>84Z57</td>
<td>No. 7 Nozzle</td>
</tr>
<tr>
<td>84Z58</td>
<td>No. 8 Nozzle</td>
</tr>
<tr>
<td>85216</td>
<td>No. 4 Long Ceramic Cup</td>
</tr>
<tr>
<td>85259</td>
<td>No. 5 Long Ceramic Cup</td>
</tr>
<tr>
<td>85217</td>
<td>No. 6 Long Ceramic Cup</td>
</tr>
<tr>
<td>85218</td>
<td>No. 8 Long Ceramic Cup</td>
</tr>
</tbody>
</table>

ELECTRODES

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Pure Tungsten 7 inches long</th>
<th>1% Thoriated Tungsten 7 inches long</th>
<th>2% Thoriated Tungsten 7 inches long</th>
</tr>
</thead>
<tbody>
<tr>
<td>.040 in.</td>
<td>79Z15</td>
<td>84Z22</td>
<td>84Z18</td>
</tr>
<tr>
<td>1/16 in.</td>
<td>79Z16</td>
<td>84Z23</td>
<td>84Z19</td>
</tr>
<tr>
<td>3/32 in.</td>
<td>76Z47</td>
<td>84Z24</td>
<td>84Z20</td>
</tr>
<tr>
<td>1/8 in.</td>
<td>76Z52</td>
<td>84Z25</td>
<td>81Z79</td>
</tr>
</tbody>
</table>

* When 3-inch electrodes are used, a short torch cap, Part No. 56Y45, is also required.
HOSE REPAIR AND REPLACEMENT

Power Cable-and-Hose Assembly
If the power cable-and-hose assembly becomes damaged, we recommend that you purchase a new assembly, or send the damaged cable-and-hose assembly over to your nearest LINDE repair station for possible repair. DO NOT TRY TO REPAIR IT YOURSELF. The connection fittings at each end of the assembly are crimped to the cable and insulator hose by special crimping tools at the factory to obtain a strong and completely water-tight joint. A satisfactory repair job cannot be done without these tools.

Argon and Water Hose Assemblies
If an argon or water hose assembly becomes damaged, we recommend that you purchase a new hose assembly or send the damaged hose assembly to the nearest LINDE repair station for possible repair. DO NOT ATTEMPT PERMANENT REPAIRS YOURSELF. As with the power cable-and-hose assembly, the connection fittings are crimped on at the factory by special crimping tools to assure a leakproof connection. A completely satisfactory job cannot be done without these tools. Improper repair of an argon hose connection, for example, could cause argon dilution, resulting in incomplete arc protection and consequent unsatisfactory welds. If you must continue to use the torch until new or properly-repaired plastic hose can be installed, temporary repairs can be made as follows:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Hose</th>
<th>Nut</th>
<th>Nipple</th>
</tr>
</thead>
<tbody>
<tr>
<td>54Y60</td>
<td>Water Inlet (Torch End)</td>
<td>76Z04</td>
<td>3382</td>
<td>03Z83</td>
</tr>
<tr>
<td></td>
<td>(Inlet End)</td>
<td>36Z20</td>
<td>03Z72</td>
<td></td>
</tr>
<tr>
<td>54Y61</td>
<td>Argon Inlet (Torch End)</td>
<td>76Z04</td>
<td>3382</td>
<td>03Z83</td>
</tr>
<tr>
<td></td>
<td>(Inlet End)</td>
<td>3380</td>
<td>03Z72</td>
<td></td>
</tr>
<tr>
<td>54Y78</td>
<td>Water Outlet</td>
<td>76Z10</td>
<td>36Z40</td>
<td>32A12</td>
</tr>
</tbody>
</table>

LINDE AIR PRODUCTS COMPANY
A Division of Union Carbide and Carbon Corporation

General Office: New York, N. Y.

In Canada

LINDE AIR PRODUCTS COMPANY, DIVISION OF UNION CARBIDE CANADA LIMITED
Toronto Montreal Winnipeg Vancouver

Outside U.S. and Canada

LINDE DEPARTMENT, UNION CARBIDE INTERNATIONAL COMPANY
A Division of Union Carbide and Carbon Corporation
30 East 42nd Street, New York 17, N. Y., U.S.A.

Lithographed in U.S.A.
F-9243-F IMD J-4992-56