INSTRUCTIONS and PARTS LIST

for

HELIARC

Trade-Mark

CONTENTS

INTRODUCTION 2

I. SETTING UP THE HW-9 TORCH TO WELD 2
 A. Equipment Needed 2
 B. Hose Connections 2
 C. Electrical Connections 2
 D. Installing Gas Cups, Electrodes and Electrode Holders 4
 E. Final Steps Before Welding 5

II. GENERAL NOTES ON TORCH OPERATION 5
 A. Electric Power Requirements 5
 B. Torch Hose 6
 C. Keep the Electrode Clean 6

III. SAFETY PRECAUTIONS 6

IV. HOSE REPAIR AND REPLACEMENT 6

REPLACEMENT PARTS LIST 7

Be Sure this Booklet Reaches the Operator. You Can Get Extra Copies Through Any LINDE Office.

Linde Instruction Literature
INTRODUCTION

The HELIARC HW-9 Torch is designed for hand welding thin-gauge materials. It can be used for welding with high-frequency stabilized a.c. or straight-polarity d.c. depending on the job requirements. It can be used at currents up to 75 amperes (a.c. or d.c.s.p.) for continuous duty.

I. SETTING UP THE HW-9 TORCH TO WELD

A. Equipment Needed

Check to be sure you have the following before setting up the equipment.

1. HELIARC HW-9 Torch, which includes:
 (a) Power cable-and-hose assembly
 (b) Torch cap

2. An electrode and collet of proper size for the current you intend to use.

3. A gas cup of proper size for the particular welding application.

4. To control argon flow, one of the following:
 (a) OXWELD R-502 Argon Regulator
 (b) OXWELD L-23 Argon Flowmeter and a standard oxygen regulator
 (c) Argon Flow Control Adaptor (Part No. 21X62) and a standard oxygen regulator.

5. Additional hose assemblies:
 (a) A 1/4-in. argon hose assembly (equipped with standard oxygen "B" size hose connections) of suitable length for connecting the torch cable and hose assembly to the regulator or flowmeter outlet. The following standard OXWELD hose assemblies are available:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Y72</td>
<td>12-1/2-ft.</td>
</tr>
<tr>
<td>10Y68</td>
<td>25-ft.</td>
</tr>
</tbody>
</table>

6. Welding transformer and a high-frequency generator, if welding is to be with a.c.; a welding generator, if welding is to be with d.c.

7. Suitable lengths of 2/0 welding cable.

8. A clamp to ground a length of welding cable to the work.

9. A welder's helmet with the proper shade of glass for the welding current you intend to use.

<table>
<thead>
<tr>
<th>Glass No.</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Up to 30 amps.</td>
</tr>
<tr>
<td>8</td>
<td>30 to 75 amps.</td>
</tr>
</tbody>
</table>

B. Hose Connections

1. Connect the R-502 Regulator to the argon cylinder. (See F-6869, "Instructions and Parts List for the OXWELD R-502 Regulator," for instructions on attaching and adjusting the regulator.) If the Argon Flow Control Adaptor is to be used, installation instructions may be found in Form 9333 "HW-9 Flow Control Adaptor." The adaptor may be quickly and easily installed inside the handle of the torch. Once in place, any argon flow can be obtained by setting the argon pressure gauge to a particular pressure. A chart is supplied that lists gauge settings vs. shielding gas flows. The chart is in the form of a decal and can be attached to the torch handle for ready reference.

2. Connect the regulator outlet to the power cable adaptor inlet with a suitable length of 1/4-in. argon hose.

C. Electrical Connections

Before making any connections, refer to the schematic wiring diagrams in Figures 1 and 2 for a.c. and d.c. welding setups. Note that a foot switch is connected in an external circuit to interrupt welding current. Its use is recommended because it provides a convenient method of control. It also enables you to protect the weld puddle at the end of a seam with an atmosphere of argon and thus control crater cracking — especially with high-temperature alloys. If you have an a.c. setup, radio interference caused by high-frequency current will be greatly reduced, since no high-frequency current will flow when the welding current is shut off. If no foot switch is used, the arc must be broken by lifting the torch from the work.

A number of special electrical circuits have been designed and developed to control the various phases of the welding process automatically. By their use, you can conserve argon, provide greater convenience of operation, minimize radio interference, and give added protection to the equipment and operator. For specific details, write or call your nearest LINDE office. A booklet which gives descriptions and electrical diagrams of these control circuits (F-9067) can be obtained free of charge.

1. Connections for A.C. Welding

 (a) Connect the torch power cable to the torch terminal of the high-frequency generator

(Continued on Page 4.)
FIG. 1 – Schematic Diagram for HELIARC A.C. Welding

FIG. 2 – Schematic Diagram for Heliarc D.C. Welding

NOTE 1: HEAVY LINES INDICATE CHANGES TO BE MADE IN GENERATOR CIRCUIT
NOTE 2: × INDICATES "BREAK CONNECTION HERE"
with a suitable length of 2/0 welding cable.

(b) Connect the work to the "work" terminal of the high-frequency generator with a suitable length of 2/0 welding cable. Secure the cable with a clamp to a clean surface of the work so that you have a good contact.

(c) Connect the high-frequency generator to the terminals of the transformer secondary with suitable lengths of 2/0 cable.

(d) Connect the transformer primary to one set of terminals of the main contactor. Then connect the other terminals of the main contactor to the 230- or 460-volt main power supply. Be sure to select a conductor which will carry the maximum current you will use.

(e) Connect the high-frequency generator to the lines leading from the main contactor to the transformer primary. Make this connection so that power to the high-frequency generator is shut off when the main contactor is open.

(f) Connect one terminal of the main contactor coil to one side of the main power supply. Connect the other terminal to one of the contacts of the auxiliary contactor. Connect the remaining terminal of the auxiliary contactor to the other side of the main power supply.

Connect one terminal of the auxiliary contactor coil to one terminal of the foot switch. Connect the remaining terminals of the auxiliary contactor coil and the foot switch to opposite sides of the control circuit (6 to 24 volts a.c.).

(g) Make a ground connection from the "work" terminal of the high-frequency generator. MAKE NO OTHER GROUND CONNECTION. Connect the case of the high-frequency generator and the case of the transformer to the "work" terminal of the high-frequency generator.

2. Connections for D.C. Welding

(a) For straight-polarity d.c. welding, connect the torch power cable to the generator terminal marked "electrode" or "negative." Connect the workpiece to the generator terminal marked "work" or "positive." Use suitable lengths of 2/0 welding cable to make these connections. If the generator has a polarity switch, be sure that it is set in the straight-polarity position.

(b) Connect the 2/0 welding cable leading to the work to a ground clamp. Secure the clamp to clean, bright metal of the workpiece so that good contact is established.

(c) Make separate ground connections to the work and to the generator case.

(d) If your generator is a separately excited type such as that shown in Figure 2, welding current can be shut off remotely without lifting the torch from the work. This is done by means of a foot or hand switch which actuates a field relay. The field relay is paralleled with a 0.25 MFD, 600-volt discharge condenser. For all other types of generators, obtain the manufacturer's recommendations on installing a remote current shutoff.

Connect one terminal of the foot switch to the relay. Connect the remaining terminals of the switch and of the relay to opposite sides of the separate control circuit a.c. supply. (24 volts a.c. maximum.)

(e) Connect the motor side of the generator to the 3-phase, 230- or 460-volt a.c. main power supply.

D. Installing Gas Caps, Electrodes and Electrode Holders (SEE FIGURE 3)

CAUTION: BE SURE TO SHUT OFF POWER BEFORE INSTALLING OR ADJUSTING ELECTRODES.

1. From Table I on page 5, select the size of electrode for the welding current you intend to use. Then select a collet corresponding in size to the electrode.

2. Remove the collet body from the torch head. Insert the electrode and collet into the collet body. Then screw the collet nut into the torch head to tighten the collet on the electrode.

Ceramic cups can be used to the full capacity of the torch.

KEEP TORCH HOSE OFF HOT METAL
3. Screw the cup onto the collet body. The No. 5 ceramic cup is recommended for most work. Where it is necessary to use the HW-9 Torch in very confined spaces, the somewhat smaller No. 4 ceramic cup should be used.

4. Adjust the electrode so that it extends 1/8-in. to 3/16-in. beyond the end of the cup. This is done by turning the collet insulator sleeve about one-quarter turn to the left, adjusting the electrode, and tightening the collet insulator sleeve again with the fingers. A transparent torch cap, available as an accessory, will aid in determining when a new electrode is needed.

TABLE I

ELECTRODE SIZES FOR DIFFERENT WELDING CURRENTS

| Electrode Diameter (inches) | Welding Current Amperes
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACHF</td>
</tr>
<tr>
<td>0.020</td>
<td>2-15</td>
</tr>
<tr>
<td>0.040</td>
<td>20-60</td>
</tr>
<tr>
<td>1/16</td>
<td>40-75</td>
</tr>
</tbody>
</table>

NOTE 1: Current values in this table are metered readings and do not correspond to transformer or generator settings unless the transformer or generator has been specifically calibrated for HELIARC welding.

NOTE 2: Because of the electrical characteristics of HELIARC welding, transformers not specifically designed for HELIARC welding should not be operated at more than 70% of their rated capacity. The manufacturer's recommendations should be obtained regarding the use of such transformers for HELIARC welding.

E. Final Steps Before Welding

1. Open the argon cylinder valve slowly to prevent a sudden rush of gas into the regulator; then open fully.

2. Open the regulator or flowmeter flow-adjusting valve until the float shows the desired argon flow.

3. Set the welding transformer or generator for the desired welding conditions.

4. Close the foot or hand switch.

5. Draw a test arc on a piece of scrap steel or copper.

II. GENERAL NOTES ON TORCH OPERATION

A. Electric Power Requirements

1. For a.c. welding, a single phase transformer is generally used. This will require a 230- or 460-volt a.c. power supply. For exact information on power supply requirements obtain the specifications supplied by the manufacturer of your transformer.

2. For d. c. welding, a motor-generator unit is generally used which requires a 230- or 480-volt, 3 phase a.c. power supply. For exact information on power requirements, obtain the specifications supplied by the manufacturer of your motor generator unit.

3. Many welding generators have poor arc stability characteristics when welding current is less than 25% of maximum generator rating. In such cases, a standard resistor in the ground line between generator and workpiece will give arc stability at currents as low as 10 amp.

 For very low currents (down to 2 amps.), an incandescent bulb resistor is recommended.

 Mount several bulb sockets on a board, and connect the sockets in parallel. Connect the socket bank in series in the ground welding lead. Current passed will depend on number and size of bulbs in the sockets. Current passed per bulb, given a 90-volt open-circuit, is shown below. For lower open-circuit voltages, current drops in proportion to the voltage reduction.

<table>
<thead>
<tr>
<th>Bulb (amps)</th>
<th>500-Watt</th>
<th>1,000-Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. Current</td>
<td>3.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Per Bulb</td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 With a ground line resistance, the generator current control is largely ineffective. When easily variable currents are needed (as in cases of uneven joint thickness or poor fit-up) a variable resistance should be placed in the generator exciter circuit to vary the generator voltage. The "Arctrol"' welding controller, a foot-pedal control made by Mullenbach Elec. Mfg. Co.,
Los Angeles, Cal., will be found very suitable for this purpose.

4. Special reactors are available from transformer manufacturers to provide very low current ranges when alternating current is used.

B. Torch Hose
1. Make certain that all argon hose connections and the gas-cup connections are gas-tight. If they are not, the argon may become diluted by air due to leakage, resulting in incomplete arc protection. The electrode should be silvery in color when it cools. A bluish color denotes air leakage. When welding aluminum, the presence of a dark gray deposit on or beside the weld, or a cloudy weld puddle, also indicates air leakage.

2. Keep hose off hot metal. Plastic hose softens and begins to lose strength when heated to about 125 deg. F.

3. For instructions on hose repair and replacement, see below.

C. Keep the Electrode Clean
When weld spatter sticks to the electrode, a black soot may appear when you weld aluminum; or a reddish deposit may appear when you weld stainless steel. To clean the electrode, simply draw an arc for a few seconds on a piece of scrap steel or copper.

III. SAFETY PRECAUTIONS

A. IF YOU USE A CHLORINATED SOLVENT — SUCH AS CARBON TETRACHLORIDE, TETRA-CHLORETHYLENE, OR TRICHLOROETHYLENE — TO REMOVE GREASE OR OIL FROM THE WORK, BE SURE THAT THE WORK HAS DRIED THOROUGHLY BEFORE YOU BEGIN TO WELD. ALSO, DO NOT WELD NEAR DEGREASING TANKS CONTAINING THESE SOLVENTS. FUMES FROM A CHLORINATED SOLVENT MAY REACH THE WELDING ARC AND BREAK DOWN CHEMICALLY TO FORM A TOXIC GAS. THIS CONDITION MAY EXIST WITH ANY WELDING PROCESS.

B. USE A STANDARD ARC WELDING HELMET WITH THE PROPER SHADE OF GLASS FOR THE WELDING CURRENT YOU INTEND TO USE. SEE TABLE ON PAGE 2.

C. WEAR LEATHER FRONTS OVER YOUR CLOTHES TO PROTECT YOURSELF AND YOUR CLOTHES FROM HEAT RADIATION AND ULTRA-VIOLET BURNS.

D. BE SURE TO SHUT OFF POWER BEFORE YOU ADJUST OR REPLACE ELECTRODES.

E. SHIELD THE WELDING STATION TO PROTECT NEIGHBORING WORKERS FROM ULTRA-VIOLET RADIATION.

IV. HOSE REPAIR AND REPLACEMENT

Power Cable- and-Hose Assembly

If the power cable-and-hose assembly becomes damaged, we recommend that you purchase a new assembly or send the damaged cable-and-hose assembly to the nearest LINDE apparatus repair station where it will be repaired for a nominal charge plus the cost of parts, if such repair is advisable. DO NOT TRY TO REPAIR IT YOURSELF. The connection fittings at each end of the assembly are crimped to the cable and insulator hose by special crimping tools to obtain a strong and completely gas-tight joint. A satisfactory repair job cannot be made without these tools.

KEEP ELECTRODES CLEAN AND FREE OF SPLATTER
Replacement Parts List

FOR

LIGHT-DUTY AIR-COOLED "HELIARC" WELDING TORCH HW-9

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>85W49</td>
<td>"O" Ring (3 used)</td>
<td>21X62</td>
<td>Argon Flow Control Adaptor</td>
</tr>
<tr>
<td>56Y35</td>
<td>Torch Body</td>
<td>56Y83</td>
<td>Transparent Torch Cap (long)</td>
</tr>
<tr>
<td>56Y38</td>
<td>Cable and Hose Assembly (12 1/2 ft.) (16X28)</td>
<td>84Z33</td>
<td>1/16-in. Collet</td>
</tr>
<tr>
<td>56Y42</td>
<td>Cable and Hose Assembly (25 ft.) (16X44)</td>
<td>84Z34</td>
<td>.020-in. Collet</td>
</tr>
<tr>
<td>84Z29</td>
<td>Torch Handle</td>
<td>84Z35</td>
<td>.040-in. Collet</td>
</tr>
<tr>
<td>84Z30</td>
<td>Collet Body</td>
<td>84Z36</td>
<td>No. 4 Ceramic Cup</td>
</tr>
<tr>
<td>84Z31</td>
<td>Insulator Sleeve</td>
<td>84Z37</td>
<td>No. 5 Ceramic Cup</td>
</tr>
<tr>
<td>84Z28</td>
<td>Torch Cap (short)</td>
<td>84Z38</td>
<td>No. 6 Ceramic Cup</td>
</tr>
<tr>
<td>84Z85</td>
<td>Cable Adaptor</td>
<td>85Z75</td>
<td>H.F. Insulator Sleeve</td>
</tr>
</tbody>
</table>

SUPPLIED

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Y40</td>
<td>Torch Cap (long)</td>
</tr>
<tr>
<td>85W49</td>
<td>"O" Ring</td>
</tr>
</tbody>
</table>

SUPPLIED AS ORDERED

(These parts must be purchased separately.)

- Argon Flow Control Adaptor
- Transparent Torch Cap (long)
- 1/16-in. Collet
- .020-in. Collet
- .040-in. Collet
- No. 4 Ceramic Cup
- No. 5 Ceramic Cup
- No. 6 Ceramic Cup
- H.F. Insulator Sleeve

PREVENT ARGON DILUTION - KEEP YOUR GAS CUP AND ARGON HOSE CONNECTION TIGHT

7
INDUSTRIAL GASES
LINDE Oxygen, Nitrogen, Argon, Neon, Helium,
Krypton, Xenon, Hydrogen
PREST-O-LITE Acetylene
CALCIUM CARBIDE
UNION Carbide
CARBIC Processed Carbide
OXY-Acetylene EQUIPMENT
OXWELD Apparatus for Cutting, Joining,
Treating, and Forming Metals
Acetylene Generators
Manifolds, Regulators and Valves
Welding Rods and Supplies
PREST-O-WELD Welding and Cutting Apparatus
PUROX Welding and Cutting Apparatus
PREST-O-LITE Air-Acetylene Apparatus and Small Tanks
CARBIC Acetylene Flood Lights
Acetylene Generators
ELECTRIC WELDING EQUIPMENT
UNIONMELT Automatic Welding Apparatus and Supplies
HELIARC Welding Torches
LINDE Sigma Welding Equipment
SPECIAL EQUIPMENT
LINDE Jet-Piercing Equipment
Plate-Edge Prepbration Equipment
Polyethylene Powder and Flame-Spraying Equipment
Steel-Conditioning Machines
Sub-Zero Cold Treatment Equipment
OXWELD Oxy-Acetylene Cutting Machines
Pressure-Welding Machines
OXYGEN THERAPY SUPPLIES
LINDE Oxygen U.S.P.
Oxygen Therapy Regulators
Oxygen Therapy Manifolds and Valves
SYNTHETIC CRYSTALS
LINDE Synthetic Sapphire, Ruby, Spinel, and Titania
Synthetic Calcium- and Cadmium Tungstes
Fine Alumina Abrasive
SILICONE CHEMICALS
LINDE Silicone Oils and Resins
Silanes

LINDE AIR PRODUCTS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION

In Canada
DOMINION OXYGEN COMPANY, LIMITED, TORONTO

General Office
30 East 42nd Street, New York 17, N. Y.

Eastern States
BALTIMORE 18, MD.
532 East 29th Street
BOSTON 16, MASS.
441 Stuart Street
BUFFALO 3, N. Y.
250 Delaware Ave.
CHARLESTON 1, W. VA.
2 Virginia Street
NEW YORK 17, N. Y.
205 East 42nd Street
PHILADELPHIA 22, PA.
1422 North Broad Street
PITTSBURGH 19, PA.
311 Ross Street

Central States
CHICAGO 1, ILL.
230 North Michigan Avenue
CINCINNATI 29, OHIO
709 Mt. View Avenue
CLEVELAND 14, OHIO
1533-15 Superior Avenue
DETROIT 2, MICH.
6-240 General Motors Building
INDIANAPOLIS 4, IND.
729 North Pennsylvania Street
MILWAUKEE 46, WIS.
1623 South 38th Street
MINNEAPOLIS 2, MINN.
527 Second Avenue, South
ST. LOUIS 9, MO.
4226 Forest Park Boulevard

Southern States
ATLANTA 4, GA.
310 Peachtree Street, N. E.
BIRMINGHAM 1, ALA.
1001-13 South 22nd Street
JACKSONVILLE 3, FLA.
2410 Dennis Street
MEMPHIS 5, TENN.
46 West McLemore Avenue
NEW ORLEANS 13, LA.
828-32 Howard Avenue

Southwestern States
DALLAS 1, TEXAS
2626 Commerce Street
DENVER 9, COLD.
685 South Broadway
HOUSTON 11, TEXAS
2119 Harrisburg Boulevard
KANSAS CITY 6, MO.
910 Baltimore Avenue
TULSA 1, OKLA.
614 National Bank of Tulsa Bldg.

Western States
LOS ANGELES 58, CALIF.
2770 Leonis Boulevard
PHOENIX, ARIZ.
401 East Buchanan Street
PORTLAND 3, ORE.
1205 Northwest Marshall Street
SALT LAKE CITY 1, UTAH
362 Pierpoint Avenue
SAN DIEGO 6, CALIF.
22 Battery Street
SEATTLE 4, WASH.
3404 Fourth Ave., South
SPokane 12, WASH.
2023 West Maxwell Avenue

In Canada
Dominion Oxygen Company, Limited
TORONTO • MONTREAL
WINNIPEG • VANCOUVER